Zhao-qing Zhang

Learn More
Based on the concept of complementary media, we propose an invisibility cloak operating at a finite frequency that can cloak an object with a prespecified shape and size within a certain distance outside the shell. The cloak is comprised of a dielectric core and an "antiobject" embedded inside a negative index shell. The cloaked object is not blinded by the(More)
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many(More)
Using the tight-binding model, we have studied the resonant-transport properties of the multiply connected ring systems threaded by magnetic flux F , and coupled to two electron reservoirs. For different flux F the electronic-energy spectrum and their corresponding total transmission probabilities of multiring systems have been calculated and compared. Some(More)
We propose to use transformation optics to generate a general illusion such that an arbitrary object appears to be like some other object of our choice. This is achieved by using a remote device that can transform the scattered light outside a virtual boundary into that of the object chosen for the illusion, irrespective of the profile and direction of the(More)
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the(More)
We report a first-principles study of static transport of localized waves in quasi-one-dimensional open media. We find that such transport, dominated by disorder-induced resonant transmissions, displays novel diffusive behavior. Our analytical predictions are entirely confirmed by numerical simulations. We show that the prevailing self-consistent(More)
Maximizing parallelism and minimizing communication overheads are important issues on distributed-memory systems. This paper presents a communication optimization technique named redundant computation partitioning, and also gives its implementation. The main idea is to select computation redundancy, represented by a redundant vector, properly for each(More)
We study theoretically the dispersion of plasmonic honeycomb lattices and find Dirac spectra for both dipole and quadrupole modes. Zigzag edge states derived from Dirac points are found in ribbons of these honeycomb plasmonic lattices. The zigzag edge states for out-of-plane dipole modes are closely analogous to the electronic ones in graphene nanoribbons.(More)