Zhao Zhuo

Learn More
This paper mainly investigates why small-world networks are navigable and how to navigate small-world networks. We find that the navigability can naturally emerge from self-organization in the absence of prior knowledge about underlying reference frames of networks. Through a process of information exchange and accumulation on networks, a hidden metric(More)
Controlling complex networks is of paramount importance in science and engineering. Despite recent efforts to improve controllability and synchronous strength, little attention has been paid to the speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding pinning node selection. To address this issue, we propose a(More)
Community structure can naturally emerge in paths to synchronization, and scratching it from the paths is a tough issue that accounts for the diverse dynamics of synchronization. In this paper, with assumption that the synchronization on complex networks is made up of local and collective processes, we proposed a scheme to lock the local synchronization(More)
This study was conducted to investigate the effects of zinc sources on gene expression of zinc-related transporters in intestinal porcine epithelial cells (IPEC-1). IPEC-1 cells were treated with zinc glycine chelate (Zn-Gly), zinc methionine (Zn-Met), and zinc sulfate (ZnSO4), respectively, for measurement of cell viability. Then, the relative expression(More)
Ferrous glycinate (Fe-Gly) maintains high bioavailability in animals, but its exact absorption mechanism is still unknown. Here, we studied on the absorption kinetics of ferrous glycinate and its impact on the relevant transport protein in Sprague-Dawley (SD) rats. A total of 72 SD rats (male, BW 100 ± 6.25 g) were randomly allotted to three treatments.(More)
In this paper, we investigate a synchronization-based, data-driven clustering approach for the analysis of functional magnetic resonance imaging (fMRI) data, and specifically for detecting functional activation from fMRI data. We first define a new measure of similarity between all pairs of data points (i.e., time series of voxels) integrating both complete(More)
The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In(More)
  • 1