Learn More
[1] This paper presents a satellite-based retrieval method for inferring the vertical variation of cloud droplet effective radius (DER) by utilizing multispectral near-infrared (NIR) measurements at 1.25, 1.65, 2.15, and 3.75 mm, available from the Moderate Resolution Imaging Spectrometer (MODIS) satellite observations. The method is based on the principle(More)
We report the results of a modeling study on the sensitivity of normalized difference vegetation index (NDVI) and surface reflectance to differences in instrument spectral response functions (SRF) for various Advanced Very High Resolution Radiometers (AVHRR) onboard the National Oceanic and Atmospheric Administration's (NOAA) satellites NOAA-6 – 16 as well(More)
Satellite remote sensing is a promising technique to estimate global or regional evapotranspiration (ET) or evaporative fraction (EF) of the surface total net radiation budget. The current methods of estimating the ET (or EF) from the gradient between land surface temperature (T s) and near surface air temperature are very sensitive to the retrieval errors(More)
Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term(More)
[1] Single scattering albedo (SSA) governs the strength of aerosols in absorbing solar radiation, but few methods are available to directly measure this important quantity. There currently exist many ground-based measurements of spectral transmittance from which aerosol optical thickness (AOT) are retrieved under clear sky conditions. Reflected radiances at(More)
[1] Papers published in this special section report findings from the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). They are concerned with (1) the temporal and spatial distributions of aerosol loading and precursor gases, (2) aerosol single scattering albedo (SSA), (3) aerosol direct radiative effects, (4)(More)
[1] Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general(More)
[1] Chang and Li [2002] proposed a new cloud microphysics retrieval technique that can estimate the vertical profile of droplet effective radius (DER) for water clouds using multispectral near-infrared (NIR) measurements. The underlying principle of the retrieval technique is that radiance measurements at distinct multi-NIR wavelengths possess different(More)
This paper is concerned with uncertainties in the Advanced Very High Resolution Radiometer (AVHRR)-based retrieval of optical depth for heavy smoke aerosol plumes generated from forest fires that occurred in Canada due to a lack of knowledge on their optical properties (single-scattering albedo and asymmetry parameter). Typical values of the optical(More)