Learn More
We report a new rapid household microwave method to successfully grow graphene on h-BN flakes without using any catalysts. We obtained a novel uniform multilevel matrix of vertical graphene sheets on h-BN flakes. The unique structure possessed outstanding electron conductivity and thermal properties (29.1 W m(-1) K(-1)).
Ti-6Al-4V titanium alloy milling has been frequently used in aviation/aerospace industries. Application environments put forward high requirements to create a desired proportion of the constituent phases and fine grain size for optimum mechanical properties of the machined workpiece. However, quantifying microstructural features of dual-phase (α + β)(More)
Surface topography and chemical nature of biological materials play an important role in regulating cell behaviors. For the intention of improving the biological performance of Ti6Al4V, the hierarchical micro/nano-topographies containing bioactive ions (Ca(2+) and Mg(2+)) were fabricated in this study. Briefly, the hierarchical micro/nano-topography was(More)
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on(More)
Extraordinary tubular graphene cellular material of a tetrahedrally connected covalent structure was very recently discovered as a new supermaterial with ultralight, ultrastiff, superelastic, and excellent conductive characteristics, but no high specific surface area will keep it from any next-generation energy storage applications. Herein, we prepare(More)
High efficiency dry face milling experiments on powder metallurgy superalloy, were conducted using coated carbide tools. The approach to prolong the service life of the TiAlN-TiN coated carbide tool in milling powder metallurgy superalloy is presented. By the use of SEM and energy spectrometer, the wear morphology and mechanisms of rake face and flank wear(More)
In this paper a finite element analysis (FEA) of machining for AISI1045 is presented. In particular, the thermodynamical constitutive equation(T-C-E) in FEA is applied for both workpiece material and tool material. Cutting temperature and tool wear depth are predicted. The comparison between the predicted and experimental cutting temperature and tool wear(More)