Zhanqi Zhao

Learn More
INTRODUCTION Lung protective ventilation requires low tidal volume and suitable positive end-expiratory pressure (PEEP). To date, few methods have been accepted for clinical use to set the appropriate PEEP. The aim of this study was to test the feasibility of PEEP titration guided by ventilation homogeneity using the global inhomogeneity (GI) index based on(More)
Potential harmful effects of ventilation therapy could be reduced by model-based predictions of the effects of ventilator settings to the patient. To obtain optimal predictions, the model has to be individualized based on patients' data. Given a nonlinear model, the result of parameter identification using iterative numerical methods depends on initial(More)
The electrical impedance tomography (EIT)-based global inhomogeneity (GI) index was introduced to quantify tidal volume distribution within the lung. Up to now, the GI index was evaluated for plausibility but the analysis of how it is influenced by various physiological factors is still missing. The aim of our study was to evaluate the influence of(More)
BACKGROUND Information on regional ventilation distribution in mechanically ventilated patients is important to develop lung protective ventilation strategies. In the present prospective animal study, we introduce an electrical impedance tomography (EIT)-based method to classify lungs into normally ventilated, overinflated, tidally recruited/derecruited and(More)
The objective of this paper is to introduce and evaluate the adaptive SLICE method (ASM) for continuous determination of intratidal nonlinear dynamic compliance and resistance. The tidal volume is subdivided into a series of volume intervals called slices. For each slice, one compliance and one resistance are calculated by applying a least-squares-fit(More)
Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an(More)
It has been observed that the distribution of the training targets used to calculate the GREIT reconstruction matrix has a strong impact on its chief figure of merit, the amplitude response (AR). We found that uniform AR requires a minimum target distance to the domain boundary , and target density gradient toward the centre has less impact on uniform AR.
Differences in regional lung function between the 3rd and 5th intercostal space (ICS) were explored in 10 cystic fibrosis (CF) patients and compared to 10 lung-healthy controls by electrical impedance tomography (EIT). Regional ratios of impedance changes corresponding to the maximal volume of air exhaled within the first second of a forced expiration(More)
We hypothesized that not all patients with appreciably recruited lung tissue during a recruitment maneuver (RM) show significant improvement of oxygenation. In the present study, we combined electrical impedance tomography (EIT) with oxygenation measurements to examine the discrepancies of lung ventilation and perfusion versus oxygenation after RM.A(More)
Objective: The distribution of ventilation within the lung is inhomogeneous. We hypothesized that the degree of inho-mogeneity in patients with cystic fibrosis (CF) differs from that in healthy subjects. Method: Three adult patients with cystic fibrosis (CF) and two healthy subjects were recruited for this preliminary study. Subjects were asked to breathe(More)