Learn More
Previously we proposed that Schwann cell development from the neural crest is a two-step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we(More)
We show that in the rat, the major gene of PNS myelin, P0, is expressed long before myelination in the neural crest, Schwann cell precursors, and embryonic Schwann cells irrespective of whether they will myelinate or not. This myelin-independent P0 expression is constitutive and likely to serve as a specific marker for the Schwann cell lineage. The much(More)
In some situations, cell death in the nervous system is controlled by an interplay between survival factors and negative survival signals that actively induce apoptosis. The present work indicates that the survival of Schwann cells is regulated by such a dual mechanism involving the negative survival signal transforming growth factor beta (TGFbeta), a(More)
We have examined both how the molecular phenotype of Schwann cells in vitro is regulated by transforming growth factor beta (TGF-beta), using immunohistochemistry and immunoblotting, and the distribution of TGF-beta 2 and 3 in embryonic and mature nerves and ganglia, using immunohistochemistry and in situ hybridisation. We find that TGF-beta 2 and -3(More)
We compared the mitogenic response of Schwann cells freshly isolated from adult, neonatal, and embryonic nerves, and compared these cells with cells that had been cultured in serum for 5 days. DNA synthesis in response to growth factors was measured using bromodeoxyuridine and immunocytochemistry. Freshly isolated adult Schwann cells were unresponsive to(More)
Using the rat sciatic nerve as a model for the study of Schwann cell differentiation we have identified a Schwann cell precursor, a distinct cell type present in developing nerves at a time when they are projecting to their target tissues. These cells develop into Schwann cells over a relatively short time in vivo. In vitro, they can generate Schwann cells(More)
Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and(More)
The important functions of heat shock factor 1 (HSF1) in certain malignant cancers have granted it to be an appealing target for developing novel strategy for cancer therapy. Here, we report that higher HSF1 expression is associated with more aggressive malignization in epithelial ovarian tumors, indicating that targeting HSF1 is also a promising strategy(More)
We have adopted RNA fingerprinting methods to screen for genes that are rapidly up- or down-regulated during normal mammalian development, comparing mRNA from early (embryo day 12) to late (embryo day 13) mouse Schwann cell precursors. The use of total RNA, a reduction of cDNA template for amplification, the detection of RT-PCR products with a sensitive DNA(More)