Learn More
The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of(More)
Extensive studies from different fields reveal that many macromolecules, especially enzymes, show slow transitions among different conformations. This phenomenon is named such things as dynamic disorder, heterogeneity, hysteretic or mnemonic enzymes across these different fields, and has been directly demonstrated by single molecule enzymology and NMR(More)
The microtubule assembly process has been extensively studied, but the underlying molecular mechanism remains poorly understood. The structure of an artificially generated sheet polymer that alternates two types of lateral contacts and that directly converts into microtubules, has been proposed to correspond to the intermediate sheet structure observed(More)
A protein undergoes conformational dynamics with multiple time scales, which results in fluctuating enzyme activities. Recent studies in single-molecule enzymology have observe this "age-old" dynamic disorder phenomenon directly. However, the single-molecule technique has its limitation. To be able to observe this molecular effect with real biochemical(More)
2 How do mammalian cells that share the same genome exist in notably distinct phenotypes, exhibiting differences in morphology, gene expression patterns, and epigenetic chromatin statuses? Furthermore how do cells of different phenotypes differentiate reproducibly from a single fertilized egg? These fundamental questions are closely related to a deeply(More)
The bacterial flagellar motor plays a crucial role in both bacterial locomotion and chemotaxis. Recent experiments reveal that the switching dynamics of the motor depend on the rotation speed of the motor, and thus the motor torque, nonmonotonically. Here we present a unified mathematical model which treats motor torque generation based on experimental(More)
Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is(More)
  • 1