Zhang John Chen

Learn More
An important issue in neuroscience is the characterization for the underlying architectures of complex brain networks. However, little is known about the network of anatomical connections in the human brain. Here, we investigated large-scale anatomical connection patterns of the human cerebral cortex using cortical thickness measurements from magnetic(More)
Recent research on Alzheimer's disease (AD) has shown that cognitive and memory decline in this disease is accompanied by disrupted changes in the coordination of large-scale brain functional networks. However, alterations in coordinated patterns of structural brain networks in AD are still poorly understood. Here, we used cortical thickness measurement(More)
The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz), spontaneous fluctuations of the blood oxygen level dependent (BOLD) signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many(More)
Neuroanatomical differences attributable to aging and gender have been well documented, and these differences may be associated with differences in behaviors and cognitive performance. However, little is known about the dynamic organization of anatomical connectivity within the cerebral cortex, which may underlie population differences in brain function. In(More)
Modularity, presumably shaped by evolutionary constraints, underlies the functionality of most complex networks ranged from social to biological networks. However, it remains largely unknown in human cortical networks. In a previous study, we demonstrated a network of correlations of cortical thickness among specific cortical areas and speculated that these(More)
Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults. As morphometric studies have shown widespread structural damage in TLE, this condition is often referred to as a system disorder with disrupted structural networks. Studies based on univariate statistical comparisons can only indirectly test such hypothesis. Graph theory(More)
White matter tracts, which play a crucial role in the coordination of information flow between different regions of grey matter, are particularly vulnerable to multiple sclerosis. Many studies have shown that the white matter lesions in multiple sclerosis are associated with focal abnormalities of grey matter, but little is known about the alterations in(More)
Recent studies have demonstrated small-world properties in both functional and structural brain networks that are constructed based on different parcellation approaches. However, one fundamental but vital issue of the impact of different brain parcellation schemes on the network topological architecture remains unclear. Here, we used resting-state(More)
Cortical thickness correlation across individuals has been observed. So far, it remains unclear to what extent such a correlation in thickness is a reflection of underlying fiber connection. Here we explicitly compared the patterns of cortical thickness correlation and diffusion-based fiber connection across the entire cerebral cortex, in 95 normal adults.(More)
Normal aging is accompanied by various cognitive functional declines. Recent studies have revealed disruptions in the coordination of large-scale functional brain networks such as the default mode network in advanced aging. However, organizational alterations of the structural brain network at the system level in aging are still poorly understood. Here,(More)