Learn More
Bioremediation is a cost-effective and eco-friendly approach to decontaminate soils polluted by petroleum hydrocarbons. However, this technique usually requires a long time due to the slow degradation rate by bacteria. By applying U-tube microbial fuel cells (MFCs) designed here, the degradation rate of petroleum hydrocarbons close to the anode (<1 cm) was(More)
The plot-culture experiments were conducted for examining the feasibility of Pharbitis nil L. and its microbial community to remedy petroleum contaminated soils. The petroleum contaminated soil, containing 10% (w/w) of the total petroleum hydrocarbons (TPHs), was collected from the Shengli Oil Field, Dongying City, Shandong Province, China. The collected(More)
As the cloud computing technology develops during the last decade, outsourcing data to cloud service for storage becomes an attractive trend, which benefits in sparing efforts on heavy data maintenance and management. Nevertheless, since the outsourced cloud storage is not fully trustworthy, it raises security concerns on how to realize data deduplication(More)
Phytoremediation of soils contaminated by organic chemicals is a challenging problem in environmental science and engineering. On the basis of identifying remediation plants from ornamentals, the remediation capability of Mirabilis Jalapa L. to treat petroleum contaminated soil from the Shengli Oil Field in Dongying City, Shandong Province, China was(More)
Phytoremediation is a promising green technology for cleanup of petroleum hydrocarbons (PHCs) in contaminated environment. Based on the objective of identifying special ornamental plants for the effective biodegradation of PHCs, the efficacy of Impatiens balsamina L. to phytoremedy petroleum contaminated soil from the Shengli Oil Field in Dongying City,(More)
Both the internal transcribed spacer (ITS) region and 18S rRNA genes are broadly applied in molecular fingerprinting studies of fungi. However, the differences in those two ribosomal RNA regions are still largely unknown. In the current study, three sets of most suitable subunit ribosomes in ITS and 18S rRNA were compared using denaturing gradient gel(More)
One of the few preclinical models used to identify mood stabilizers is an assay in which amphetamine-induced hyperactivity (AMPH) is potentiated by the benzodiazepine chlordiazepoxide (CDP), an effect purportedly blocked by mood stabilizers. Our data here challenge this standard interpretation of the AMPH-CDP model. We show that the potentiating effects of(More)
The single and joint toxicological effects of AHTN and cadmium (Cd) on early developmental stages of wheat, including AHTN and Cd uptake, chlorophyll (CHL), malondialdehyde (MDA), superoxide dismutase (SOD), and peroxidase (POD) contents in the seedlings, were investigated. Uptake of AHTN or Cd by seedlings increased with an increase in the concentrations(More)
The accumulation of cadmium (Cd) in wheat seedlings under single and joint stress of galaxolide (HHCB) and Cd was investigated, and their phytotoxicity and oxidation stress including chlorophyll (CHL), malondialdehyde (MDA), superoxide dismutase, and perosidase were assessed. The results showed that the accumulation of Cd in wheat seedlings increased with(More)
Fe(3)O(4) was added into the anode to improve the performance of microbial fuel cells (MFCs). Stainless steel mesh (SSM), activated carbon (AC) with SSM (AcM) and Fe(3)O(4) added AcM (AcFeM) anodes had been made and investigated by electrochemical measurements. The maximum power density of AcFeM anode (809 ± 5 mW/m(2)) is 22% higher than that of AcM (664 ±(More)