Zhan Yuin Ong

Learn More
Amphiphilic polymeric nanostructures have long been well-recognized as an excellent candidate for drug delivery applications. With the recent advances in the "top-down" and "bottom-up" approaches, development of well-defined polymeric nanostructures of different shapes has been possible. Such a possibility of tailoring the shape of the nanostructures has(More)
In the face of mounting global antibiotics resistance, the identification and development of membrane-active antimicrobial peptides (AMPs) as an alternative class of antimicrobial agent have gained significant attention. The physical perturbation and disruption of microbial membranes by the AMPs have been proposed to be an effective means to overcome(More)
Antimicrobial peptides (AMPs) which predominantly act via membrane active mechanisms have emerged as an exciting class of antimicrobial agents with tremendous potential to overcome the global epidemic of antibiotics-resistant infections. The first generation of AMPs derived from natural sources as diverse as plants, insects and humans has provided a wealth(More)
Polycarbonates provide an attractive option for use as gene delivery vectors owing to their biocompatibility and ease of incorporating functional moieties. In this study, we described an approach to synthesize cationic polymers with well-defined molecular weights and narrow polydispersities by an organocatalytic ring-opening polymerization of functional(More)
Because of the critical role of the large neutral amino acid transporter-1 (LAT-1) in promoting tumor growth and proliferation, it is fast emerging as a highly attractive biomarker for the imaging and treatment of human malignancies, including breast cancer. While multibranched gold nanoparticles (AuNPs) have emerged as a promising modality in the(More)
Pseudomonas aeruginosa is often implicated in burn wound infections; its inherent drug resistance often renders these infections extremely challenging to treat. This is further compounded by the problem of emerging drug resistance and the dearth of novel antimicrobial drug discovery in recent years. In the perennial search for effective antimicrobial(More)
Biodegradable antimicrobial polymers are a promising solution for combating drug resistant microbes. When designing these materials, the balance between charge and hydrophobicity significantly affects the antimicrobial activity and selectivity toward microbes over mammalian cells. Furthermore, where the charge and hydrophobicity is located on the molecules(More)
With cancer being the major cause of mortality worldwide, the continued development of safe and efficacious treatments is warranted. A better understanding of the molecular mechanism and genetic basis of tumor initiation and progression, coupled with advances in chemistry, molecular biology and engineering have led to discovery of a wide range of(More)
In this study, cationic nanoparticles self-assembled from the amphiphilic copolymer poly(N-methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium bromide] sebacate) (P(MDS-co-CES) were synthesized and used to deliver Bcl-2 targeted siRNA into HepG2, HeLa and MDA-MB-231 cell lines, and downregulate Bcl-2 mRNA(More)
Polyurethanes (PUs) are considered ideal candidates for drug delivery applications due to their easy synthesis, excellent mechanical properties, and biodegradability. Unfortunately, methods for preparing well-defined PU nanoparticles required miniemulsion polymerization techniques with a nontrivial control of the polymerization conditions due to the(More)