Learn More
Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell-based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease(More)
Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic(More)
Aberrant activation of β-catenin signaling plays an important role in human tumorigenesis. However, molecular mechanisms behind the β-catenin signaling deregulation are mostly unknown because genetic alterations in this pathway only account for a small fraction of tumors. Here, we investigator if other major pathways can regulate β-catenin signaling(More)
One of the greatest obstacles to current cancer treatment efforts is the development of drug resistance by tumors. Despite recent advances in diagnostic practices and surgical interventions, many neoplasms demonstrate poor response to adjuvant or neoadjuvant radiation and chemotherapy. As a result, the prognosis for many patients afflicted with these(More)
BACKGROUND/AIMS We have demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent BMPs in regulating osteoblast differentiation of mesenchymal stem cells (MSCs) although the molecular mechanism underlying BMP9-induced osteogenesis remains to be fully elucidated. It is known that epigenetic regulations play an important role in(More)
Osteogenic differentiation from mesenchymal progenitor cells (MPCs) are initiated and regulated by a cascade of signaling events. Either Wnt/β-catenin or estrogen signaling pathway has been shown to play an important role in regulating skeletal development and maintaining adult tissue homeostasis. Here, we investigate the potential crosstalk and synergy of(More)
BACKGROUND/AIMS Osteosarcoma (OS) is the most common primary bone malignancy in children and young adults. Molecular mechanisms underlying the pathogenesis of OS remain to be fully understood. Several members of the E-F hand calcium-binding S100 protein family are differentially expressed in human cancers. We previously showed that S100A6 is highly(More)
BACKGROUND AND AIMS Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal(More)
Osteosarcoma (OS) is the most common primary malignant tumor of bone with a high propensity for lung metastasis. Despite significant advances in surgical techniques and chemotherapeutic regimens over the past few decades, there has been minimal improvement in OS patient survival. There is an urgent need to identify novel antitumor agents to treat human OS.(More)
Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs' basic research and translational applications. To overcome this(More)