Zengwei Zhu

  • Citations Per Year
Learn More
The development of new, high-quality functional materials has been at the forefront of condensed-matter research. The recent advent of two-dimensional black phosphorus has greatly enriched the materials base of two-dimensional electron systems (2DESs). Here, we report the observation of the integer quantum Hall effect in a high-quality black phosphorus(More)
We present a study of angle-resolved quantum oscillations of electric and thermoelectric transport coefficients in semimetallic WTe2, which has the particularity of displaying a large B(2) magnetoresistance. The Fermi surface consists of two pairs of electronlike and holelike pockets of equal volumes in a "Russian doll" structure. The carrier density, Fermi(More)
The Landau spectrum of bismuth is complex and includes many angle-dependent lines in the extreme quantum limit. The adequacy of single-particle theory to describe this spectrum in detail has been an open issue. Here, we present a study of angle-resolved Nernst effect in bismuth, which maps the angle-resolved Landau spectrum for the entire solid angle up to(More)
Elemental bismuth provides a rare opportunity to explore the fate of a three-dimensional gas of highly mobile electrons confined to their lowest Landau level. Coulomb interaction, neglected in the band picture, is expected to become significant in this extreme quantum limit, with poorly understood consequences. Here, we present a study of the(More)
We report on a study of the Nernst effect in graphite extended up to 45 T. The Nernst response sharply peaks when a Landau tube is squeezed inside the thermally fuzzy Fermi surface and presents a temperature-independent fixed point when the tube flattens to a single ring. Beyond the quantum limit, the onset of the field-induced phase transition leads to a(More)
With a widely available magnetic field of 10 T, one can attain the quantum limit in bismuth and graphite. At zero magnetic field, these two elemental semi-metals host a dilute liquid of carriers of both signs. All quasi-particles are confined to a few Landau tubes, when the quantum limit is attained. Each time a Landau tube is squeezed before definitely(More)
The Fermi surface of elemental bismuth consists of three small rotationally equivalent electron pockets, offering a valley degree of freedom to charge carriers. A relatively small magnetic field can confine electrons to their lowest Landau level. This is the quantum limit attained in other dilute metals upon application of sufficiently strong magnetic(More)
The thermopower and Nernst effect were investigated for undoped parent compounds LaFeAsO and LaNiAsO. Both the thermopower and Nernst signal in iron-based LaFeAsO are significantly larger than those in nickel-based LaNiAsO. Furthermore, abrupt changes in both the thermopower and Nernst effect are observed below the structural phase transition temperature(More)
We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta4Pd3Te16 (Tc ~ 4.6 K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-law dependence, Δρ∝B(α) with the exponent α close to 1 over a wide temperature and field range. The magnetoresistance shows no(More)