Zeng Lertmanorat

Learn More
One of the most challenging problems in peripheral nerve stimulation is the ability to activate selectively small axons without large ones. Electrical stimulation of peripheral nerve activates large diameter fibers before small ones. Currently available techniques for selective activation of small axons without large ones require long-duration stimulation(More)
Electrical extracellular stimulation of peripheral nerve activates the large-diameter motor fibers before the small ones, a recruitment order opposite the physiological recruitment of myelinated motor fibers during voluntary muscle contraction. Current methods to solve this problem require a long-duration stimulus pulse which could lead to electrode(More)
Electrical stimulation of peripheral nerve activates large-diameter fibers before small ones. A physiological recruitment order, from small to large-diameter axons, is desirable in many applications. Previous studies using computer simulations showed that selective activation of small fibers could be achieved by reshaping the extracellular voltage profile(More)
Multiple contact nerve cuff electrodes require many leads, making their implantation difficult and potentially damaging to the nerve. Therefore the design of circuits capable of reducing the number of wires is crucial to the development of a device that can be implanted in patients. The flat interface nerve electrode (FINE) was developed to allow selective(More)
One of the goals of peripheral nerve cuff electrode development is the design of an electrode capable of selectively activating a specific population of axons in a common nerve trunk. Several designs such as the round spiral electrode or the flat interface nerve electrode (FINE) have shown such ability. However, multiple contact electrodes require many(More)
Electrical stimulation of peripheral nerve activates large-diameter fibers before small ones. Previous studies using computer simulations and animal experiments showed that selective activation of small fibers could be achieved using an array of four cathodes and five anodes to reshape the extracellular voltage along the nerve and that the technique was(More)
Although electrical stimulation has proven to be capable of restoring neuronal function in the damaged or injured nervous system, there are several limitations to this technique. The availability of electrodes capable of selective fascicle recruitment and physiological fiber diameter recruitment (from small to large) is crucial for the development of(More)
  • 1