Zeng Lertmanorat

Learn More
Electrical stimulation of peripheral nerve activates large-diameter fibers before small ones. A physiological recruitment order, from small to large-diameter axons, is desirable in many applications. Previous studies using computer simulations showed that selective activation of small fibers could be achieved by reshaping the extracellular voltage profile(More)
Electrical extracellular stimulation of peripheral nerve activates the large-diameter motor fibers before the small ones, a recruitment order opposite the physiological recruitment of myelinated motor fibers during voluntary muscle contraction. Current methods to solve this problem require a long-duration stimulus pulse which could lead to electrode(More)
One of the most challenging problems in peripheral nerve stimulation is the ability to activate selectively small axons without large ones. Electrical stimulation of peripheral nerve activates large diameter fibers before small ones. Currently available techniques for selective activation of small axons without large ones require long-duration stimulation(More)
Although electrical stimulation has proven to be capable of restoring neuronal function in the damaged or injured nervous system, there are several limitations to this technique. The availability of electrodes capable of selective fascicle recruitment and physiological fiber diameter recruitment (from small to large) is crucial for the development of(More)
Electrical stimulation of peripheral nerve activates large-diameter fibers before small ones. Previous studies using computer simulations and animal experiments showed that selective activation of small fibers could be achieved using an array of four cathodes and five anodes to reshape the extracellular voltage along the nerve and that the technique was(More)
  • 1