Zeke Barger

  • Citations Per Year
Learn More
Many structures of the mammalian CNS generate propagating waves of electrical activity early in development. These waves are essential to CNS development, mediating a variety of developmental processes, such as axonal outgrowth and pathfinding, synaptogenesis, and the maturation of ion channel and receptor properties. In the mouse cerebral cortex, waves of(More)
Cortical development involves the structuring of network features by genetically programmed molecular signaling pathways. Additionally, spontaneous ion channel activity refines neuronal connections. We examine Ca(2+) fluctuations in the first postnatal week of normal mouse neocortex and that expressing knockout of the transcription factor T-brain-1 (Tbr1):(More)
Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging(More)
  • 1