Zehava Eichenbaum

Learn More
The hemolytic Streptococcus pyogenes can use a variety of heme compounds as an iron source. In this study, we investigate hemoprotein utilization by S. pyogenes. We demonstrate that surface proteins contribute to the binding of hemoproteins to S. pyogenes. We identify an ABC transporter from the iron complex family named sia for streptococcal iron(More)
We characterized the regulated activity of the lactococcal nisA promoter in strains of the gram-positive species Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, Enterococcus faecalis, and Bacillus subtilis. nisA promoter activity was dependent on the proteins NisR and NisK, which constitute a two-component signal transduction(More)
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that(More)
The β-hemolytic group A streptococcus (GAS) is a major pathogen that readily uses hemoglobin to satisfy its requirements for iron. The streptococcal hemoprotein receptor in GAS plays a central role in heme utilization and binds fibronectin and laminin in vitro. Shr inactivation attenuates the virulent M1T1 GAS strain in two murine infection models and(More)
In Group A streptococcus (GAS), the metallorepressor MtsR regulates iron homeostasis. Here we describe a new MtsR-repressed gene, which we named hupZ (heme utilization protein). A recombinant HupZ protein was purified bound to heme from Escherichia coli grown in the presence of 5-aminolevulinic acid and iron. HupZ specifically binds heme with stoichiometry(More)
Group A streptococcus (GAS) is the etiological agent of a variety of local and invasive infections as well as post-infection complications in humans. This β-hemolytic bacterium encounters environmental heme in vivo in a concentration that depends on the infection type and stage. While heme is a noxious molecule, the regulation of cellular heme levels and(More)
The flavivirus resistance gene, Flv, in mice has been identified as 2′-5′ oligoadenylate synthetase 1b (Oas1b). Susceptible mice produce a protein that is truncated (Oas1btr) at the C-terminus due to a premature stop codon encoded by a C820T transition. Mice produce 8 Oas1 proteins, Oas1a-Oas1h. In the present study, Oas1a, Oas1b and Oas1btr were expressed(More)
The ubiquitin-proteasome pathway plays vital roles in multiple cellular processes including protein turnover and transcription regulation. The fate of a ubiquitinated protein is determined by the number of ubiquitin molecules added and the site to which they are added. Monoubiquitinated proteins are stabilized and often activated, while polyubiquitinated(More)
The bacterium Streptococcus pyogenes requires heme, which is taken up via an ABC transporter. An understanding of this pathway may result in new approaches to antibacterial agents. Both SiaA and NEAT2 (NEAr Transporter 2) are proteins involved in heme binding. One of the axial ligands of SiaA, His 229, was purified to study how mutagenesis affects heme(More)
  • 1