Learn More
Death-associated protein kinase (DAPK) is a death domain-containing serine/threonine kinase, and participates in various apoptotic paradigms. Here, we identify the extracellular signal-regulated kinase (ERK) as a DAPK-interacting protein. DAPK interacts with ERK through a docking sequence within its death domain and is a substrate of ERK. Phosphorylation of(More)
The Vibrio vulnificus nuclease, Vvn, is a non-specific periplasmic nuclease capable of digesting DNA and RNA. The crystal structure of Vvn and that of Vvn mutant H80A in complex with DNA were resolved at 2.3 A resolution. Vvn has a novel mixed alpha/beta topology containing four disulfide bridges, suggesting that Vvn is not active under reducing conditions(More)
BACKGROUND The process of vascular calcification has been associated with the canonical Wnt/β-catenin signalling pathway in cell cultures and animal studies. The relationship between circulating Wnt/β-catenin inhibitors and vascular calcification in dialysis patients is unknown. The aim of this study was to investigate the associations between serum(More)
The expression of human thymidine kinase 1 (hTK1) is highly dependent on the growth states and cell cycle stages in mammalian cells. The amount of hTK1 is significantly increased in the cells during progression to the S and M phases, and becomes barely detectable in the early G(1) phase by a proteolytic control during mitotic exit. This tight regulation is(More)
Contractile forces mediated by RhoA and Rho kinase (ROCK) are required for a variety of cellular processes, including cell adhesion. In this study, we show that RhoA-dependent ROCKII activation is negatively regulated by phosphorylation at a conserved tyrosine residue (Y722) in the coiled-coil domain of ROCKII. Tyrosine phosphorylation of ROCKII is(More)
Human cytosolic thymidine kinase (TK1) is tightly regulated in the cell cycle by multiple mechanisms. Our laboratory has previously shown that in mitotic-arrested cells human TK1 is phosphorylated at serine-13, accompanied by a decrease in catalytic efficiency. In this study we investigated whether serine-13 phosphorylation regulated TK1 activity and found(More)
The RhoA GTPase plays a vital role in assembly of contractile actin-myosin filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in culture. GEF-H1 is a microtubule-associated guanine nucleotide exchange factor that activates RhoA upon release from microtubules. The overexpression of GEF-H1 deficient in microtubule(More)
The nuclear protein interacting with the distal CCAAT box of human thymidine kinase (TK) gene promoter has been suggested to be a specific TK-CCAAT-binding protein, which is responsible for the serum-dependence of TK transactivation in normal human IMR-90 fibroblasts. By biochemical characterization, TK-CCAAT-binding protein was found to be distinct from(More)
Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell-substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The(More)
This report identifies a novel gene encoding 15-oxoprostaglandin-Delta13-reductase (PGR-2), which catalyzes the reaction converting 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. The expression of PGR-2 is up-regulated in the late phase of 3T3-L1 adipocyte differentiation and predominantly distributed in adipose tissue. Overexpression of PGR-2 in cells(More)