Learn More
GABA(A) receptors are ligand-gated chloride channels composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to a multiplicity of GABA(A) receptor subtypes with distinct subunit composition; regional, cellular and subcellular distribution; and pharmacology. Most of these receptors are(More)
Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABA(A) receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology(More)
BACKGROUND AND PURPOSE GABAA receptors are the major inhibitory neurotransmitter receptors in the mammalian brain and the target of many clinically important drugs interacting with different binding sites. Recently, we demonstrated that CGS 9895 (2-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-one) elicits a strong and subtype-dependent enhancement of(More)
BACKGROUND AND PURPOSE GABAA receptors are the major inhibitory neurotransmitter receptors in the mammalian brain and the target of many clinically important drugs interacting with different binding sites. Recently, we demonstrated that CGS 9895 (2-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-one) acts as a null modulator (antagonist) at the high(More)
Despite significant advances in understanding the role of benzodiazepine (BZ)-sensitive populations of GABAA receptors, containing the α1, α2, α3 or α5 subunit, factual substrates of BZ-induced learning and memory deficits are not yet fully elucidated. It was shown that α1-subunit affinity-selective antagonist β-CCt almost completely abolished spatial(More)
GABA(A) receptors mediate the action of many clinically important drugs interacting with different binding sites. For some potential binding sites, no interacting drugs have yet been identified. Here, we established a steric hindrance procedure for the identification of drugs acting at the extracellular α1+β3- interface, which is homologous to the(More)
GABAA receptors are the major inhibitory neurotransmitter receptors in the central nervous system and are the targets of many clinically important drugs, which modulate GABA induced chloride flux by interacting with separate and distinct allosteric binding sites. Recently, we described an allosteric modulation occurring upon binding of pyrazoloquinolinones(More)
Synthesis of ligands inactive or with low activity at α1 GABAA receptors has become the key concept for development of novel, more tolerable benzodiazepine (BZ)-like drugs. WYS8, a remarkably (105 times) α1-subtype selective partial positive modulator, may serve as a pharmacological tool for refining the role of α1 GABAA receptors in mediation of BZs’(More)
Enormous progress in understanding the role of four populations of benzodiazepine-sensitive GABAA receptors was paralleled by the puzzling findings suggesting that substantial separation of behavioral effects may be accomplished by apparently non-selective modulators. We report on SH-I-048A, a newly synthesized chiral positive modulator of GABAA receptors(More)
We previously demonstrated that airway smooth muscle (ASM) cells express γ-aminobutyric acid A receptors (GABA(A)Rs), and that GABA(A)R agonists acutely relax ASM. Among the GABA(A)R α subunits, human ASM cells express only α4 and α5, providing the opportunity for selective pharmacologic targeting. Novel GABA(A)R-positive allosteric modulators designed for(More)