Learn More
Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently(More)
The effects of biological invasions are most evident in isolated oceanic islands such as the Hawaiian Archipelago, where invasive plant species are rapidly changing the composition and function of plant communities. In this study, we compared the specific leaf area (SLA), leaf tissue construction cost (CC), leaf nutrient concentration, and net CO2(More)
Leaf carbon capture strategies of native and exotic invasive plants were compared by examining leaf traits and their scaling relationships at community and global scales. Community-level leaf trait data were obtained for 55 vascular plant species from nutrient-enriched and undisturbed bushland in Sydney, Australia. Global-scale leaf trait data were compiled(More)
Introduced African grasses are invading the grasslands of the Venezuelan savannas and displacing the native grasses. This work, which is part of a program to understand the reasons for the success of the African grasses, specifically investigates whether introduced and native grasses differ in some photosynthetic characteristics. The responses to photon(More)
The African grass Hyparrhenia rufa has established itself successfully in South American savannas (Llanos) and displaced dominant native grasses such as Trachypogon plumosus from the wetter and more fertile habitats. Several ecophysiological traits have been related to the higher competitive capacity of H. rufa. To further analyze the behavior of both(More)
Clearing of natural vegetation for pastures and the deliberate introduction of African grasses constitute significant threats to the biological diversity of the tropics, subtropics, and warm temperate regions of the Americas. African grasses have escaped from cultivated pastures and revegetated rangeland sites and invaded natural areas at alarming rates.(More)
Two perennial tussock grasses of savannas were compared in a glasshouse study to determine why they differed in their ability to withstand frequent, heavy grazing; Cenchrus ciliaris is tolerant and Themeda triandra is intolerant of heavy grazing. Frequent defoliation at weekly intervals for six weeks reduced shoot biomass production over a subsequent 42 day(More)
The introduction of African grasses in Neotropical savannas has been a key factor to improve pasture productivity. We compared the response of five Brachiaria species to controlled drought (DT) in terms of biomass yield and allocation, pattern of root distribution, plant water use, leaf growth, nutrient concentration and dry matter digestibility. The(More)
Introduced African grasses are invading Neotropical savannas and displacing the native herbaceous community. This work, which is part of a program to understand the success of the African grasses, specifically investigates whether introduced and native grasses differ in their water relations. The water relations of the native Trachypogon plumosus and the(More)
The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO2 concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a(More)