Zbigniew Zasłona

Learn More
BACKGROUND Nicotinic acetylcholine receptors (nAChR) have been identified on a variety of cells of the immune system and are generally considered to trigger anti-inflammatory events. In the present study, we determine the nAChR inventory of rat alveolar macrophages (AM), and investigate the cellular events evoked by stimulation with nicotine. METHODS Rat(More)
The role and origin of alveolar macrophages (AMs) in asthma are incompletely defined. We sought to clarify these issues in the context of acute allergic lung inflammation using house dust mite and OVA murine models. Use of liposomal clodronate to deplete resident AMs (rAMs) resulted in increased levels of inflammatory cytokines and eosinophil numbers in(More)
Alveolar macrophages (AMs) represent the first line of innate immune defense in the lung. AMs use pattern recognition receptors (PRRs) to sense pathogens. The best studied PRR is Toll-like receptor (TLR)4, which detects LPS from gram-negative bacteria. The lipid mediator prostaglandin (PG)E2 dampens AM immune responses by inhibiting the signaling events(More)
BACKGROUND Endogenous prostanoids have been suggested to modulate sensitization during experimental allergic asthma, but the specific role of prostaglandin (PG) E₂ or of specific E prostanoid (EP) receptors is not known. OBJECTIVE Here we tested the role of EP2 signaling in allergic asthma. METHODS Wild-type (WT) and EP2(-/-) mice were subjected to(More)
JAK-STAT signaling mediates the actions of numerous cytokines and growth factors, and its endogenous brake is the family of SOCS proteins. Consistent with their intracellular roles, SOCS proteins have never been identified in the extracellular space. Here we report that alveolar macrophages can secrete SOCS1 and -3 in exosomes and microparticles,(More)
BACKGROUND Peripheral blood monocytes (PBMo) originate from the bone marrow, circulate in the blood and emigrate into various organs where they differentiate into tissue resident cellular phenotypes of the mononuclear phagocyte system, including macrophages (Mphi) and dendritic cells (DC). Like in other organs, this emigration and differentiation process is(More)
MiRNAs are important post-transcriptional regulators of gene expression. MiRNA expression is a crucial part of host responses to bacterial infection, however there is limited knowledge of their impact on the outcome of infections. We investigated the influence of miR-21 on macrophage responses during infection with Listeria monocytogenes, which establishes(More)
Prostaglandin E2 (PGE2) regulates numerous biological processes by modulating transcriptional activation, epigenetic control, proteolysis, and secretion of various proteins. Scar formation depends on fibroblast elaboration of matrix proteins such as collagen, and this process is strongly suppressed by PGE2 through activation of cAMP-dependent protein kinase(More)
Our body clock drives rhythms in the expression of genes that have a 24-h periodicity. The transcription factor BMAL1 is a crucial component of the molecular clock. A number of physiological processes, including immune function, are modulated by the circadian clock. Asthma, a disease with very strong clinical evidence demonstrating regulation by circadian(More)
Macrophage colony-stimulating factor 1 (CSF-1) plays a critical role in the differentiation of mononuclear phagocytes from bone marrow precursors, and maturing monocytes and macrophages exhibit increased expression of the CSF-1 receptor, CSF1R. The expression of CSF1R is tightly regulated by transcription factors and epigenetic mechanisms. We previously(More)