Learn More
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these(More)
The trigger system of the Surface Detector (SD) of the Pierre Auger Observatory is described, from the identification of candidate showers (E > 1 EeV) at the level of a single station, among a huge background (mainly single muons), up to the selection of real events and the rejection of random coincidences at a higher central trigger level (including the(More)
The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency(More)
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×10 19 eV by analyzing cosmic rays with energies above E ≥ 5×10 18 eV arriving within an angular separation of approximately 15 •. We characterize the(More)
—The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the Analog-to-Digial Converter (ADC) traces generated by very inclined showers were obtained from the Auger(More)
—Observations of ultra-high energy neutrinos became a priority in experimental astroparticle physics. Up to now, the Pierre Auger Observatory did not find any candidate on a neutrino event. This imposes competitive limits to the diffuse flux of ultra-high energy neutrinos in the EeV range and above. The prototype Front-End boards for Auger-Beyond-2015 with(More)
—For the observation of ultra high-energy cosmic rays (UHECRs) by the detection of their coherent radio emission an FPGA based wavelet trigger is being developed. Using radio detection, the electromagnetic part of an air shower in the atmosphere may be studied in detail, thus providing information complementary to that obtained by water Cherenkov detectors(More)
  • 1