Zaigang Chen

Learn More
Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and(More)
Ethanol is an effective, environmentally friendly, nonfossil, transportation biofuel that produces far less pollution than gasoline. Furthermore, ethanol can be produced from plentiful, domestically available, renewable, cellulosic biomass. However, cellulosic biomass contains two major sugars, glucose and xylose, and a major obstacle in this process is(More)
Agricultural residues, such as grain by-products, are rich in the hydrolyzable carbohydrate polymers hemicellulose and cellulose; hence, they represent a readily available source of the fermentable sugars xylose and glucose. The biomass-to-ethanol technology is now a step closer to commercialization because a stable recombinant yeast strain has been(More)
OsGSTL2, encoding glutathione S-transferase, is a lambda class gene on chromosome 3 of rice (Oryza sativa L.). RNA blot analysis and semi-quantitative RT-PCR assays demonstrated that the transcription of OsGSTL2 in rice roots treated with chlorsulfuron increased significantly. To further understand OsGSTL2 promoter activity, a DNA fragment (GST2171) of(More)
The intact Pichia stipitis xylose reductase gene (XR) has been cloned and expressed in Saccharomyces cerevisiae. The possible further improvement of the expression of the Pichia gene in the new host was studied. To improve the expression of the XR gene in yeast (Saccharomyces cerevisiae), its 5'noncoding sequence containing the genetic elements for(More)
Using uniform random design optimization and the mathematical model equation we optimized the regeneration tissue culture system of the chilli pepper. An efficient and detailed plant reproducible protocol in vitro has been established using different explants and induction media for three chilli pepper cultivars. The result displayed that the seedlings at(More)
Coronatine insensitive 1 (COI1) is a key regulator in the jasmonate signaling pathway, which plays a central role in jasmonate signaling by forming SCF complexes in the ubiquitination pathway. In this study, the full-length cDNA of CaCOI1 was isolated from chili pepper by reverse transcription PCR. CaCOI1 contains a 1,812-bp open reading frame encoding 603(More)
  • 1