Learn More
A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage(More)
Plant disease susceptibility is often increased by nitrogen (N) application. Therefore, it is important to know if resistance loci are effective in different plant N environments. One-hundred lines of the Bala x Azucena rice (Oryza sativa) mapping population were grown in two N treatments and tested for partial resistance to blast (Magnaporthe grisea)(More)
Basal stalk rot (BSR), caused by Sclerotinia sclerotiorum, is a devastating disease in sunflower worldwide. The progress of breeding for Sclerotinia BSR resistance has been hampered due to the lack of effective sources of resistance for cultivated sunflower. Our objective was to transfer BSR resistance from wild annual Helianthus species into cultivated(More)
Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana. Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S.(More)
Basal stalk rot (BSR), caused by the ascomycete fungus (Lib.) de Bary, is a serious disease of sunflower ( L.) in the cool and humid production areas of the world. Quantitative trait loci (QTL) for BSR resistance were identified in a sunflower recombinant inbred line (RIL) population derived from the cross HA 441 × RHA 439. A genotyping-by-sequencing (GBS)(More)
Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly(More)
  • 1