Zaharias D. Zaharis

Learn More
—A near-optimal base-station antenna array synthesis suitable for broadcasting applications is presented. The array is required to provide a high-gain radiation pattern with a main lobe slightly tilted from the horizontal plane and null filling inside an angular sector under the main lobe. To satisfy the above requirements, a novel invasive weed(More)
—A new antenna array beamformer based on neural networks (NNs) is presented. The NN training is performed by using optimized data sets extracted by a novel invasive weed optimization (IWO) variant called modified adaptive dispersion IWO (MADIWO). The trained NN is utilized as an adaptive beamformer that makes a uniform linear antenna array steer the main(More)
A method is presented for the compression of biomedical images using in place of the discrete cosine transform (DCT) the discrete orthogonal Gauss-Hermite transform (DOGHT). The latter expands the signals on a basis of Gauss-Hermite functions instead of the cosine functions and leads, in many practical cases, to 2-3 times better compression for the same(More)
Differential Evolution (DE) is a population-based stochastic global optimization technique that requires the adjustment of a very few parameters in order to produce results. However, the control parameters involved in DE are highly dependent on the optimization problem; in practice, their fine-tuning is not always an easy task. The self-adaptive(More)
Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in(More)