Learn More
Repetitive transcranial magnetic stimulation (rTMS) procedures are being widely applied in therapeutic and investigative studies. Numerous studies have investigated the effects of rTMS on cortical excitability and inhibition, yielding somewhat contradictory results. The purpose of this study was to comprehensively review this literature to guide the(More)
Animal studies have shown that cerebellar projections influence both excitatory and inhibitory neurones in the motor cortex but this connectivity has yet to be demonstrated in human subjects. In human subjects, magnetic or electrical stimulation of the cerebellum 5-7 ms before transcranial magnetic stimulation (TMS) of the motor cortex decreases the(More)
Transcranial magnetic stimulation can be used to non-invasively study inhibitory processes in the human motor cortex. Interhemispheric inhibition can be measured by applying a conditioning stimulus to the motor cortex resulting in inhibition of the contralateral motor cortex. Transcranial magnetic stimulation can also be used to demonstrate ipsilateral(More)
Transcranial direct current stimulation (tDCS) is a brain stimulation technique that has the potential to improve working memory (WM) deficits in many clinical disorders. The aim of this study was to investigate the role of current strength on the ability of anodal tDCS to improve WM, and secondly to investigate the time course of effects. Twelve healthy(More)
Several studies have demonstrated that cortical inhibition (CI) can be recorded by paired transcranial magnetic stimulation (TMS) of the motor cortex and recorded by surface electromyography (EMG). However, recording CI from other cortical regions that are more closely associated with the pathophysiology of some neurological and psychiatric disorders (eg,(More)
BACKGROUND The neurobiology of autism spectrum disorder (ASD) is not particularly well understood, and biomedical treatment approaches are therefore extremely limited. A prominent explanatory model suggests that social-relating symptoms may arise from dysfunction within the mirror neuron system, while a recent neuroimaging study suggests that these(More)
BACKGROUND High-frequency left-sided repetitive transcranial magnetic stimulation (HFL-TMS) has been shown to have antidepressant effects in double-blind trials. Low-frequency stimulation to the right prefrontal cortex (LFR-TMS) has also shown promise, although it has not been assessed in treatment-resistant depression and its effects have not been compared(More)
BACKGROUND Cortical inhibition (CI) deficits have been proposed as a pathophysiologic mechanism in schizophrenia. This study employed 3 transcranial magnetic stimulation (TMS) paradigms to assess CI in patients with schizophrenia. Paired-pulse TMS involves stimulating with a lower-intensity pulse a few milliseconds before a higher-intensity pulse, thereby(More)
OBJECTIVES This study explored whether the effects of repetitive transcranial magnetic stimulation (rTMS) on corticospinal excitability are dependent on the stimulation intensity and examined the effect of rTMS on inhibitory function. METHODS Nine normal volunteers received 15min of 1Hz rTMS at 85 and 115% of the resting motor threshold (RMT). Cortical(More)
A considerable body of imaging research has demonstrated morphological changes in the corpus callosum (CC) of patients with schizophrenia. Transcranial magnetic stimulation (TMS) allows the possibility for the in vivo investigation of a variety of aspects of brain function including the spread of information across the CC. We aimed to investigate whether(More)