Zachary Van Rheen

Learn More
BACKGROUND Disruption of fibrinolytic homeostasis participates in the pathogenesis of severe lung diseases like acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF) and plastic bronchitis. We have developed a pulmonary formulation of tissue plasminogen activator (pf-tPA) that withstands nebulization and reaches the lower airways.(More)
Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention.(More)
Interstitial lung disease is a devastating disease in humans that can be further complicated by the development of secondary pulmonary hypertension. Accumulating evidence indicates that the oxidant superoxide can contribute to the pathogenesis of both interstitial lung disease and pulmonary hypertension. We used a model of pulmonary hypertension secondary(More)
Although production of reactive oxygen species (ROS) such as superoxide (O(2)(.-)) has been implicated in chronic hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodeling, the transcription factors and gene targets through which ROS exert their effects have not been completely identified. We used mice overexpressing the extracellular(More)
1. Tissue plasminogen activator (tPA) has both fibrinolytic and anti-inflammatory activity. These properties may be useful in treating inflammatory lung diseases, such as acute respiratory distress syndrome (ARDS). 2. We have previously demonstrated the feasibility of targeted pulmonary delivery of tPA. As part of our research to develop a clinically viable(More)
Delivery of recombinant superoxide dismutase to the lung is limited by its short half-life and poor tissue penetration. We hypothesized that a chimeric protein, SOD2/3, containing the enzymatic domain of manganese superoxide dismutase (SOD2) and the heparan-binding domain of extracellular superoxide dismutase (SOD3), would allow for the delivery of more(More)
  • 1