Zachary Freudenburg

Learn More
High-gamma-band (>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles(More)
The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive(More)
The increasing understanding of human brain functions makes it possible to directly interact with the brain for therapeutic purposes. Implantable brain computer interfaces promise to replace or restore motor functions in patients with partial or complete paralysis. We postulate that neuronal states associated with gestures, as they are used in the finger(More)
Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed(More)
OBJECTIVE To demonstrate the decodable nature of pediatric brain signals for the purpose of neuroprosthetic control. We hypothesized that children would achieve levels of brain-derived computer control comparable to performance previously reported for adults. PATIENTS AND METHODS Six pediatric patients with intractable epilepsy who were invasively(More)
Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex (M1) as a source of signals for this purpose. Still, target(More)
Whether measured by MRI or direct cortical physiology, infraslow rhythms have defined state invariant cortical networks. The time scales of this functional architecture, however, are unlikely to be able to accommodate the more rapid cortical dynamics necessary for an active cognitive task. Using invasively monitored epileptic patients as a research model,(More)
Several motor related Brain Computer Interfaces (BCIs) have been developed over the years that use activity decoded from the contralateral hemisphere to operate devices. Contralateral primary motor cortex is also the region most severely affected by hemispheric stroke. Recent studies have identified ipsilateral cortical activity in planning of motor(More)
OBJECTIVE A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional(More)
OBJECTIVE Electrocorticography (ECoG) electrodes implanted on the surface of the brain have recently emerged as a potential signal platform for brain-computer interface (BCI) systems. While clinical ECoG electrodes are currently implanted beneath the dura, epidural electrodes could reduce the invasiveness and the potential impact of a surgical site(More)