Learn More
Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase(More)
The response regulator Nla28 is a key component in a cascade of transcriptional activators that modulates expression of many important developmental genes in Myxococcus xanthus. In this study, we identified and characterized Nla28S, a histidine kinase that modulates the activity of this important regulator of M. xanthus developmental genes. We show that the(More)
Myxococcus xanthus has a large number of histidine kinase (HK) signal transduction proteins and many of these HKs are important for fruiting body development. Nla6S is an uncharacterized HK that lacks many of the conserved sequence motifs of typical HK proteins. In this study, we report that expression of the nla6S gene increases about sixfold during(More)
A variety of soil-dwelling bacteria produce polyhydroxybutyrate (PHB), which serves as a source of energy and carbon under nutrient deprivation. Bacteria belonging to the genus Pseudomonas do not generally produce PHB but are capable of using the PHB degradation product (R)-3-hydroxybutyrate [(R)-3-HB] as a growth substrate. Essential to this utilization is(More)
UNLABELLED Although genes encoding enzymes and proteins related to ethanolamine catabolism are widely distributed in the genomes of Pseudomonas spp., ethanolamine catabolism has received little attention among this metabolically versatile group of bacteria. In an attempt to shed light on this subject, this study focused on defining the key regulatory(More)
When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation(More)
Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in(More)
  • 1