Learn More
We have clearly discriminated the single-, bilayer-, and multiple-layer graphene (<10 layers) on Si substrate with a 285 nm SiO2 capping layer by using contrast spectra, which were generated from the reflection light of a white light source. Calculations based on Fresnel's law are in excellent agreement with the experimental results (deviation 2%). The(More)
The effects of amphetamine (1.5 mg/kg) and caffeine (120 mg/kg, 75 mg/kg) on shuttle behavior and on the concentrations of reduced nicotinamide adenine dinucleotide (NADH) of the brain were studied in 56 rats from the perspective of regional brain metabolism. Amphetamine potentiated the shuttle behavior including avoidance responses and response speed,(More)
OBJECTIVE To evaluate the accuracy of quantitative three dimensional echocardiography in patients with deformed left ventricles. DESIGN Three dimensional and cross sectional echocardiographic estimates of left ventricular volume and ejection fraction were prospectively compared to those obtained from magnetic resonance imaging. SETTING Echocardiography(More)
In conventional superconductivity, sharp phonon modes (oscillations in the crystal lattice) are exchanged between electrons within a Cooper pair, enabling superconductivity. A critical question in the study of copper oxides with high critical transition temperature (Tc) is whether such sharp modes (which may be more general, including, for example, magnetic(More)
The assembly of synthetic, controllable molecular mechanical systems is one of the goals of nanotechnology. Protein-based molecular machines, often driven by an energy source such as ATP, are abundant in biology. It has been shown previously that branched motifs of DNA can provide components for the assembly of nanoscale objects, links and arrays. Here we(More)
Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with(More)
Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high-transition-temperature superconductors has driven an intensive search for an alternative mechanism. A coupling of(More)
Adenosine monophosphate-activated protein kinase (AMPK) acts as a major sensor of cellular energy status in cancers and is critically involved in cell sensitivity to anticancer agents. Here, we showed that AMPK was inactivated in lymphoma and related to the upregulation of the mammalian target of rapamycin (mTOR) pathway. AMPK activator metformin(More)
We used angle-resolved photoemission spectroscopy applied to deeply underdoped cuprate superconductors Bi2Sr2Ca(1-x)YxCu2O8 (Bi2212) to reveal the presence of two distinct energy gaps exhibiting different doping dependence. One gap, associated with the antinodal region where no coherent peak is observed, increased with underdoping, a behavior known for more(More)
Obtaining insight into microscopic cooperative effects is a fascinating topic in condensed matter research because, through self-coordination and collectivity, they can lead to instabilities with macroscopic impacts like phase transitions. We used femtosecond time- and angle-resolved photoelectron spectroscopy (trARPES) to optically pump and probe TbTe3, an(More)