Learn More
Adipose tissue represents an abundant and accessible source of multipotent adult stem cells and is used by many investigators for tissue engineering applications; however, not all laboratories use cells at equivalent stages of isolation and passage. We have compared the immunophenotype of freshly isolated human adipose tissue-derived stromal vascular(More)
Regenerative medical techniques will require an abundant source of human adult stem cells that can be readily available at the point of care. The ability to use unmatched allogeneic stem cells will help achieve this goal. Since adipose tissue represents an untapped reservoir of human cells, we have compared the immunogenic properties of freshly isolated,(More)
The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells or stromal cells to the adipocyte and osteoblast lineage pathways.(More)
OBJECTIVE To determine whether small ubiquitin-related modifier (SUMO)ylation of lysine 107 plays a role in regulating the activity of peroxisome proliferator-activated receptor gamma (PPARgamma). RESEARCH METHODS AND PROCEDURES Transient expression of wild-type and K107R-PPARgamma2 in the NIH 3T3 fibroblast cell line was carried out in conjunction with(More)
First described in the suprachiasmatic nucleus, circadian clocks have since been found in several peripheral tissues. Although obesity has been associated with dysregulated circadian expression profiles of leptin, adiponectin, and other fat-derived cytokines, there have been no comprehensive analyses of the circadian clock machinery in adipose depots. In(More)
Interferon-gamma (IFNgamma) treatment of adipocytes results in a down-regulation of the peroxisome proliferator-activated receptor gamma (PPARgamma). The decrease in PPARgamma expression is mediated by inhibition of PPARgamma synthesis and increased degradation of PPARgamma. In this study, we demonstrate that both PPARgamma1 and PPARgamma2 are targeted to(More)
Adipogenesis plays a critical role in energy metabolism and is a contributing factor to the obesity epidemic. This study examined the proteome of primary cultures of human adipose-derived adult stem (ADAS) cells as an in vitro model of adipogenesis. Protein lysates obtained from four individual donors were compared before and after adipocyte differentiation(More)
Impaired insulin signaling is a key feature of type 2 diabetes and is associated with increased ubiquitin-proteasome-dependent protein degradation in skeletal muscle. An extract of Artemisia dracunculus L. (termed PMI5011) improves insulin action by increasing insulin signaling in skeletal muscle. We sought to determine if the effect of PMI5011 on insulin(More)
Many short-lived nuclear proteins are targeted for degradation by the ubiquitin-proteasome pathway. The role of the nucleus in regulating the turnover of these proteins is not well defined, although many components of the ubiquitin-proteasome system are localized in the nucleus. We have used nucleoplasm from highly purified HeLa nuclei to examine the(More)