Yvonne Willi

Learn More
Changes in environmental conditions can rapidly shift allele frequencies in populations of species with relatively short generation times. Frequency shifts might be detectable in neutral genetic markers when stressful conditions cause a population decline. However, frequency shifts that are diagnostic of specific conditions depend on isolating sets of genes(More)
A decline in population size can lead to the loss of allelic variation, increased inbreeding, and the accumulation of genetic load through drift. We estimated the fitness consequences of these processes in offspring of controlled within-population crosses from 13 populations of the self-incompatible, clonal plant Ranunculus reptans. We used allozyme allelic(More)
Reduced genetic variation at marker loci in small populations has been well documented, whereas the relationship between quantitative genetic variation and population size has attracted little empirical investigation. Here we demonstrate that both neutral and quantitative genetic variation are reduced in small populations of a fragmented plant(More)
Population persistence has been studied in a conservation context to predict the fate of small or declining populations. Persistence models have explored effects on extinction of random demographic and environmental fluctuations, but in the face of directional environmental change they should also integrate factors affecting whether a population can adapt.(More)
Inbreeding is known to reduce heterozygosity of neutral genetic markers, but its impact on quantitative genetic variation is debated. Theory predicts a linear decline in additive genetic variance (V(A)) with increasing inbreeding coefficient (F) when loci underlying the trait act additively, but a nonlinear hump-shaped relationship when dominance and(More)
Small populations of our study species Ranunculus reptans have reduced fitness because of inbreeding, genetic load, and reduced mate availability; that is, they suffer from a three-fold genetic Allee effect. Here, we investigate how the effect of interpopulation outbreeding on offspring fitness depends on population size. We performed within- and(More)
According to neutral quantitative genetic theory, population bottlenecks are expected to decrease standing levels of additive genetic variance of quantitative traits. However, some empirical and theoretical results suggest that, if nonadditive genetic effects influence the trait, bottlenecks may actually increase additive genetic variance. This has been an(More)
Habitat fragmentation commonly causes genetic problems and reduced fitness when populations become small. Stocking small populations with individuals from other populations may enrich genetic variation and alleviate inbreeding, but such artificial gene flow is not commonly used in conservation owing to potential outbreeding depression. We addressed the role(More)
  • Yvonne Willi
  • Evolution; international journal of organic…
  • 2013
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self-fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because(More)
Cross-fertilisation predominates in eukaryotes, but shifts to self-fertilisation are common and ecologically and evolutionarily important. Reproductive assurance under outcross gamete limitation is one eco-evolutionary process held responsible for the shift to selfing. Although small effective population size is a situation where selfing plants could(More)