Yvonne Nyathi

Learn More
Peroxisomes are pleiomorphic, metabolically plastic organelles. Their essentially oxidative function led to the adoption of the name 'peroxisome'. The dynamic and diverse nature of peroxisome metabolism has led to the realisation that peroxisomes are an important source of signalling molecules that can function to integrate cellular activity and(More)
Co-translational protein targeting to the endoplasmic reticulum (ER), represents an evolutionary-conserved mechanism to target proteins into the secretory pathway. In this targeting pathway proteins possessing signal sequences are recognised at the ribosome by the signal recognition particle while they are still undergoing synthesis. This triggers their(More)
Peroxisomal ABC transporters of animals and fungi are "half-size" proteins which dimerise to form a functional transporter. However, peroxisomal ABC transporters of land plants are synthesised as a single polypeptide which represents a fused heterodimer. The N- and C-terminal pseudo-halves of COMATOSE (CTS; AtABCD1) were expressed as separate polypeptides(More)
The ribosome exit site is a focal point for the interaction of protein-biogenesis factors that guide the fate of nascent polypeptides. These factors include chaperones such as NAC, N-terminal-modifying enzymes like Methionine aminopeptidase (MetAP), and the signal recognition particle (SRP), which targets secretory and membrane proteins to the ER. These(More)
Paper: Nyathi, Y, Lousa, CDM, van Roermund, CW, Wanders, RJA, Johnson, B, Baldwin, SA, Theodoulou, FL and Baker, A (2010) The Arabidopsis Peroxisomal ABC Transporter, Comatose, Complements the Saccharomyces cerevisiae pxa1 pxa2 Delta Mutant for Metabolism of Long-chain Fatty Acids and Exhibits Fatty Acyl-CoA-stimulated ATPase Activity. Journal of Biological(More)
The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for β-oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces(More)
In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment.(More)
  • 1