Yvonne Fondufe-Mittendorf

Learn More
Nucleosome organization is critical for gene regulation. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers, competition with site-specific DNA-binding proteins, and the DNA sequence preferences of the nucleosomes themselves. However, it has been difficult to estimate the relative importance of(More)
Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a(More)
The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of approximately 380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high(More)
Many genes are recruited to the nuclear periphery upon transcriptional activation. The mechanism and functional significance of this recruitment is unclear. We find that recruitment of the yeast INO1 and GAL1 genes to the nuclear periphery is rapid and independent of transcription. Surprisingly, these genes remain at the periphery for generations after they(More)
Active eukaryotic regulatory sites are characterized by open chromatin, and yeast promoters and transcription factor binding sites (TFBSs) typically have low intrinsic nucleosome occupancy. Here, we show that in contrast to yeast, DNA at human promoters, enhancers, and TFBSs generally encodes high intrinsic nucleosome occupancy. In most cases we examined,(More)
Eukaryotic transcription occurs within a chromatin environment, whose organization has an important regulatory function and is partly encoded in cis by the DNA sequence itself. Here, we examine whether evolutionary changes in gene expression are linked to changes in the DNA-encoded nucleosome organization of promoters. We find that in aerobic yeast species,(More)
BACKGROUND The nucleosome is the fundamental packing unit of DNAs in eukaryotic cells. Its detailed positioning on the genome is closely related to chromosome functions. Increasing evidence has shown that genomic DNA sequence itself is highly predictive of nucleosome positioning genome-wide. Therefore a fast software tool for predicting nucleosome(More)
intrinsic nucleosome sequence preferences was independently validated by analysis of nucleosomes reconstituted on bacteriophage λ DNA and on an 82,000–base pair (bp) DNA region from the human β-globin locus 11. This experiment mapped nucleosomes with a single-molecule imaging approach that did not require the use of either micrococcal nuclease or parallel(More)
The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in(More)
H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF)(More)
  • 1