Yvette H. Spitz

Learn More
[1] Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional(More)
We conducted laboratory experiments to assess the bioelemental plasticity of cultures of Trichodesmium IMS101 under phosphorus (P)-replete, P-restricted, and light-limited conditions. The results reveal a high degree of stoichiometric flexibility. Specifically, Trichodesmium IMS101 is capable of growth with carbon (C) : nitrogen (N) : P ratios of C 585656 :(More)
[1] We have developed a coupled 3‐D pan‐Arctic biology/sea ice/ocean model to investigate the impact of declining Arctic sea ice on the marine planktonic ecosystem over 1988–2007. The biophysical model results agree with satellite observations of a generally downward trend in summer sea ice extent during 1988–2007, resulting in an increase in the simulated(More)
[1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and(More)
  • 1