Yvette H. Spitz

Learn More
We conducted laboratory experiments to assess the bioelemental plasticity of cultures of Trichodesmium IMS101 under phosphorus (P)-replete, P-restricted, and light-limited conditions. The results reveal a high degree of stoichiometric flexibility. Specifically, Trichodesmium IMS101 is capable of growth with carbon (C) : nitrogen (N) : P ratios of C585656 :(More)
We introduce an implicit method for state and parameter estimation and apply it to a stochastic ecological model. The method uses an ensemble of particles to approximate the distribution of model solutions and parameters conditioned on noisy observations of the state. For each particle, it first determines likely values based on the observations, then(More)
[1] We have developed a coupled 3‐D pan‐Arctic biology/sea ice/ocean model to investigate the impact of declining Arctic sea ice on the marine planktonic ecosystem over 1988–2007. The biophysical model results agree with satellite observations of a generally downward trend in summer sea ice extent during 1988–2007, resulting in an increase in the simulated(More)
[1] Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models’ performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical onedimensional(More)
[1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and(More)
Dynamical assimilation of surface elevation from tide gauges is investigated to estimate the bottom drag coefficient and surface stress as a first step in improving modeled tidal and wind-driven circulation in the Chesapeake Bay. A two-dimensional shallow water model and an adjoint variational method with a limited memory quasi-Newton optimization algorithm(More)
Summertime wind stress along the coast of the northwestern United States typically exhibits intraseasonal oscillations (ISOs) with periods from approximately 15 to 40 days, as well as fluctuations on the 2- to 6-day "weather-band" and 1-day diurnal time scales. Coastal upwelling of cool, nutrient-rich water is driven by extended periods of equatorward(More)
  • 1