Learn More
Lesions of ERBB2, PTEN, and PIK3CA activate the phosphatidylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP(3)). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP(3) recruits PDK1 and AKT to the(More)
Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3(More)
T-box (Tbx) genes represent a phylogenetically conserved family of transcription factors that play important roles during embryonic development. Tbx family members have been shown to either activate or inhibit gene expression. However, little is known about the domains within Tbx proteins responsible for mediating gene transcription. While Tbx2 is known to(More)
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is frequently deregulated in cancer. Downstream of PI3K, Akt1 and Akt2 have opposing roles in breast cancer invasive migration, leading to metastatic dissemination. Here, we identify palladin, an actin-associated protein, as an Akt1-specific substrate that modulates breast cancer cell invasive(More)
The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven(More)
Invasive migration of carcinoma cells is a prerequisite for the metastatic dissemination of solid tumours. Numerous mechanisms control the ability of cancer cells to acquire a motile and invasive phenotype, and subsequently degrade and invade the basement membrane. Several genes that are up-regulated in breast carcinoma are responsible for mediating the(More)
UNLABELLED mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin(More)
The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds(More)
The phosphatidylinositol 3-kinase/Akt pathway is responsible for key aspects of tumor progression, and is frequently hyperactivated in cancer. We have recently identified palladin, an actin-bundling protein that functions to control the actin cytoskeleton, as an Akt1-specific substrate that inhibits breast cancer cell migration. Here we have identified a(More)
The serine/threonine protein kinase Akt is a major signal transducer of the phosphoinositide 3-kinase (PI 3-K) pathway in all cells and tissues and plays a pivotal role in the maintenance of cellular processes including cell growth, proliferation, survival and metabolism. The frequent aberrant activation of the PI 3-K/Akt pathway in human cancer has made it(More)