Learn More
It is now well-known that one can reconstruct sparse or compressible signals accurately from a very limited number of measurements, possibly contaminated with noise. This technique known as “compressed sensing” or “compressive sampling” relies on properties of the sensing matrix such as the restricted isometry property. In this Note, we establish new(More)
Regulation of disulfide dithiol exchange has become increasingly important in our knowledge of plant life. Initially discovered as regulators of light-dependent malate biosynthesis in the chloroplast, plant thioredoxins are now implicated in a large panel of reactions related to metabolism, defense and development. In this review we describe the numerous(More)
The Arabidopsis type II peroxiredoxin (PRXII) family is composed of six different genes, five of which are expressed. On the basis of the nucleotide and protein sequences, we were able to define three subgroups among the PRXII family. The first subgroup is composed of AtPRXII-B, -C, and -D, which are highly similar and localized in the cytosol. AtPRXII-B is(More)
A sequence coding for a peroxiredoxin (Prx) was isolated from a xylem/phloem cDNA library from Populus trichocarpa and subsequently inserted into an expression plasmid yielding the construction pET-Prx. The recombinant protein was produced in Escherichia coli cells and purified to homogeneity with a high yield. The poplar Prx is composed of 162 residues, a(More)
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families(More)
Disruption of the two thioredoxin genes in yeast dramatically affects cell viability and growth. Expression of Arabidopsis thioredoxin AtTRX3 in the Saccharomyces thioredoxin Delta strain EMY63 restores a wild-type cell cycle, the ability to grow on methionine sulfoxide, and H2O2 tolerance. In order to isolate thioredoxin targets related to these(More)
Plants possess two well described thioredoxin systems: a cytoplasmic system including several thioredoxins and an NADPH-dependent thioredoxin reductase and a specific chloroplastic system characterized by a ferredoxin-dependent thioredoxin reductase. On the basis of biochemical activities, plants also are supposed to have a mitochondrial thioredoxin system(More)
Thioredoxin exists in all organisms and is responsible for the hydrogen transfer to important enzymes for ribonucleotide reduction and the reduction of methionine sulphoxide and sulphate. Thioredoxins have also been shown to regulate enzyme activity in plants and are also involved in the regulation of transcription factors and several other regulatory(More)
The AtTRXh5 protein belongs to the cytosolic thioredoxins h family that, in Arabidopsis, contains eight members showing very distinct patterns and levels of expression. Here, we show that the AtTRXh5 gene is up-regulated during wounding, abscission, and senescence, as well as during incompatible interactions with the bacterial pathogen Pseudomonas syringae.(More)
Germin-like proteins (GLPs) ionically bound to the walls of preglobular somatic embryos of Pinus caribaea Morelet are markers of this early developmental stage. In order to reveal the physiological implications of such markers during early embryo development, we isolated a cDNA clone from somatic embryos predicted to encode a protein with sequence(More)