Yves Guichard

Learn More
Potential differences in the toxicological properties of nanosized and non-nanosized particles have been notably pointed out for titanium dioxide (TiO(2)) particles, which are currently widely produced and used in many industrial areas. Nanoparticles of the iron oxides magnetite (Fe(3)O(4)) and hematite (Fe(2)O(3)) also have many industrial applications but(More)
This study was designed to investigate the modulatory effects of submicron and nanosized iron oxide (Fe(2)O(3)) particles on the ovalbumin (OVA)-induced immune Th2 response in BALB/c mice. Particles were intratracheally administered four times to mice before and during the OVA sensitization period. For each particle type, three different doses, namely(More)
DNA phosphate oxygens are sites for alkylation leading to phosphotriester adducts (PTEs). PTEs are reported to be both abundant and persistent and so may serve as long-term markers of genotoxicity. Previously, we reported a 32P-postlabeling assay for the specific detection of PTEs plus identification of nucleosides located 5' to PTEs. Using this, we(More)
The nature of occupational risks and hazards in industries that produce or use synthetic amorphous silica (SAS) nanoparticles is still under discussion. Manufactured SAS occur in amorphous form and can be divided into two main types according to the production process, namely, pyrogenic silica (powder) and precipitated silica (powder, gel or colloid). The(More)
Crystalline silica particles and asbestos have both been classified as carcinogenic by the International Agency for Research on Cancer (IARC). However, because of the limited data available, amorphous silica was not classifiable. In vitro, the carcinogenic potential of natural crystalline and amorphous silica particles has been revealed by the Syrian(More)
Synthetic amorphous silica nanomaterials (SAS) are extensively used in food and tire industries. In many industrial processes, SAS may become aerosolized and lead to occupational exposure of workers through inhalation in particular. However, little is known about the in vivo genotoxicity of these particulate materials. To gain insight into the toxicological(More)
Carbon nanotubes (CNTs) belong to a specific class of nanomaterials with unique properties. Because of their anticipated use in a wide range of industrial applications, their toxicity is of increasing concern. In order to determine whether specific physicochemical characteristics of CNTs are responsible for their toxicological effects, we investigated the(More)
The history of immunohistochemistry started in 1941 when Coons identified pneumococci using a direct fluorescent method. Then followed the indirect method, the addition of horseradish peroxidase, the peroxidase anti-peroxidase technique of 1979 and the use of the Avidin and Biotin complex in the early 1980s. This sequence of events can help one appreciate(More)
Carbon fibers have many applications, mainly in high-tech industries such as the aviation industry. Eleven carbon samples (fibers and particles) coming from an aeronautic group were tested for their cytotoxicity and carcinogenic potential using in vitro short-term assays in Syrian hamster embryo cells. These samples were taken during each important step of(More)
Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS) released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a coculture system of rat alveolar macrophages (NR8383) and transgenic Big Blue Rat2 embryonic fibroblasts was developed and tested with a crocidolite sample.(More)