Learn More
We study fifteen months of human mobility data for one and a half million individuals and find that human mobility traces are highly unique. In fact, in a dataset where the location of an individual is specified hourly, and with a spatial resolution equal to that given by the carrier's antennas, four spatio-temporal points are enough to uniquely identify(More)
Although widely used in practice, the behavior and accuracy of the popular module identification technique called modularity maximization is not well understood in practical contexts. Here, we present a broad characterization of its performance in such situations. First, we revisit and clarify the resolution limit phenomenon for modularity maximization.(More)
Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state(More)
Large-scale data sets of human behavior have the potential to fundamentally transform the way we fight diseases, design cities, or perform research. Metadata, however, contain sensitive information. Understanding the privacy of these data sets is key to their broad use and, ultimately, their impact. We study 3 months of credit card records for 1.1 million(More)
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack(More)
Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function(More)
Sánchez et al.'s textbook k-anonymization example does not prove, or even suggest, that location and other big-data data sets can be anonymized and of general use. The synthetic data set that they "successfully anonymize" bears no resemblance to modern high-dimensional data sets on which their methods fail. Moving forward, deidentification should not be(More)
Poverty is one of the most important determinants of adverse health outcomes globally, a major cause of societal instability and one of the largest causes of lost human potential. Traditional approaches to measuring and targeting poverty rely heavily on census data, which in most low- and middle-income countries (LMICs) are unavailable or out-of-date.(More)
While Bentley et al.'s model is very appealing, in this commentary we argue that researchers interested in big data and collective behavior, including the way humans make decisions, must account for the emotional factor. We investigate how daily choice of activities is influenced by emotions. Results indicate that mood significantly predicts people's(More)
  • 1