Yvan Velenik

Learn More
We prove existence of a wetting transition for two classes of gradient elds which include: (1) The Continuous SOS model in any dimension and (2) The massless Gaussian model in dimension 2. Combined with a recent result proving the absence of such a transition for Gaussian models above 2 dimensions (Bolthausen et al., 2000. J. Math. Phys. to appear), this(More)
The probabilistic study of effective interface models has been quite active in recent years, with a particular emphasis on the effect of various external potentials (wall, pinning potential, ...) leading to localization/delocalization transitions. I review some of the results that have been obtained. In particular, I discuss pinning by a local potential,(More)
We derive precise Ornstein-Zernike asymptotic formula for the decay of the two-point function 〈σ0σx〉β in the general context of finite range Ising type models on Z . The proof relies in an essential way on the a-priori knowledge of the strict exponential decay of the two-point function and, by the sharp characterization of phase transition due to Aizenman,(More)
We consider the d-dimensional massless free field localized by a δ-pinning of strength ɛ. We study the asymptotics of the variance of the field (when d= 2), and of the decay-rate of its 2-point function (when d≥ 2), as ɛ goes to zero, for general Gaussian interactions. Physically speaking, we thus rigorously obtain the critical behavior of the transverse(More)
We explain a unified approach to a study of ballistic phase for a large family of self-interacting random walks with a drift and self-interacting polymers with an external stretching force. The approach is based on a recent version of the OrnsteinZernike theory developed in Campanino et al. (2003, 2004, 2007). It leads to local limit results for various(More)
We consider a model of a two-dimensional interface of the SOS type, with finite-range, even, strictly convex, twice continuously differentiable interactions. We prove that, under an arbitrarily weak potential favouring zero-height, the surface has finite mean square heights. We consider the cases of both square well and δ potentials. These results extend(More)