Learn More
Francisella tularensis, a facultative intracellular bacterium, is the aetiological agent of tularaemia. Antibiotic treatment of this zoonosis is based on the administration of a fluoroquinolone or a tetracycline for cases with mild to moderate severity, whereas an aminoglycoside (streptomycin or gentamicin) is advocated for severe cases. However, treatment(More)
We report a case of transfusion-associated bacteremia caused by Psychrobacter arenosus. This psychrotolerant bacterium was previously isolated in 2004 from coastal sea ice and sediments in the Sea of Japan, but not from humans. P. arenosus should be considered a psychrotolerant bacterial species that can cause transfusion-transmitted bacterial infections.
Antibiotic treatment of tularaemia is based on a few drugs, including the fluoroquinolones (e.g., ciprofloxacin), the tetracyclines (e.g., doxycycline), and the aminoglycosides (streptomycin and gentamicin). Because no effective and safe vaccine is currently available, tularaemia prophylaxis following proven exposure to F. tularensis also relies on(More)
Francisella tularensis is the etiological agent of tularaemia and a CDC class A biological threat agent. Few antibiotic classes are currently useful in treating tularaemia, including the aminoglycosides gentamicin and streptomycin, fluoroquinolones, and tetracyclines. However, treatment failures and relapses remain frequent and F. tularensis strains(More)
The antibiotic classes that are recommended for tularaemia treatment are the aminoglycosides, the fluoroquinolones and the tetracyclines. However, cure rates vary between 60 and 100% depending on the antibiotic used, the time to appropriate antibiotic therapy setup and its duration, and the presence of complications, such as lymph node suppuration. Thus,(More)
OBJECTIVES We report the synthesis, antibacterial activity and toxicity of 24 bis-indolic derivatives obtained during the development of new ways of synthesis of marine bis-indole alkaloids from the spongotine, topsentin and hamacanthin classes. METHODS Innovative ways of synthesis and further structural optimizations led to bis-indoles presenting either(More)
To the Editor: Francisella philomiragia is a rare op-portunistic pathogen. Only 17 cases of infection in humans have been reported over a 40-year period; 15 of these occurred in North America, mainly in persons who had near-drowning experiences and in patients with chronic granulo-matous disease (1,2). We describe a case of F. philomiragia infection in a(More)
  • 1