Learn More
Helicases often achieve functional specificity through utilization of unique structural features incorporated into an otherwise conserved core. The archaeal Rad3 (xeroderma pigmentosum group D protein (XPD)) helicase is a prototypical member of the Rad3 family, distinct from other related (superfamily II) SF2 enzymes because of a unique insertion containing(More)
We describe a CCCH type of zinc finger domain in a replication protein A (RPA) homolog found in members of different lineages of the Euryarchaeota, a subdomain of Archaea. The zinc finger is characterized by CX(2)CX(8)CX(2)H, where X is any amino acid. Using MacRPA3, a representative of this new group of RPA in Methanosarcina acetivorans, we made two(More)
The minichromosome maintenance (MCM) proteins, members of the AAA+ (ATPase associated with diverse cellular activities) superfamily, are believed to constitute the replicative helicase in eukaryotic and archaeal species. Here, we present the 1.9 A resolution crystal structure of a monomeric MCM homolog from Methanopyrus kandleri, the first crystallographic(More)
Clamp loaders orchestrate the switch from distributive to processive DNA synthesis. Their importance in cellular processes is underscored by their conservation across all forms of life. Here, we describe a new form of clamp loader from the archaeon Methanosarcina acetivorans. Unlike previously described archaeal clamp loaders, which are composed of one(More)
The strand-separation activity that is important for many cellular DNA processing machineries is provided by DNA helicases. In order to understand the physiological properties of a helicase acting in the context of its macromolecular machinery, it is imperative to identify the proteins that interact with the enzyme and to analyze how these proteins affect(More)
The bacterial single-stranded DNA-binding protein (SSB) and the archaeal/eukaryotic functional homolog, replication protein A (RPA), are essential for most aspects of DNA metabolism. Structural analyses of the architecture of SSB and RPA suggest that they are composed of different combinations of a module called the oligonucleotide/oligosaccharide-binding(More)
Chromosomal DNA replication is dependent on processive DNA synthesis. Across the three domains of life and in certain viruses, a toroidal sliding clamp confers processivity to replicative DNA polymerases by encircling the DNA and engaging the polymerase in protein/protein interactions. Sliding clamps are ring-shaped; therefore, they have cognate clamp(More)
The domain Archaea is composed of several subdomains, and prominent among them are the Crenarchaeota and the Euryarchaeota. Biochemically characterized archaeal family Y DNA polymerases (Pols) or DinB homologs, to date, are all from crenarchaeal organisms, especially the genus Sulfolobus. Here, we demonstrate that archaeal family Y Pols fall into five(More)
The oligonucleotide/oligosaccharide-binding (OB) fold is central to the architecture of single-stranded- DNA-binding proteins, which are polypeptides essential for diverse cellular processes, including DNA replication, repair, and recombination. In archaea, single-stranded DNA-binding proteins composed of multiple OB folds and a zinc finger domain, in a(More)
  • 1