Learn More
The CRISPR-Cas9 system has been employed to generate mutant alleles in a range of different organisms. However, so far there have not been reports of use of this system for efficient correction of a genetic disease. Here we show that mice with a dominant mutation in Crygc gene that causes cataracts could be rescued by coinjection into zygotes of Cas9 mRNA(More)
Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic(More)
Mouse androgenetic haploid embryonic stem cells (AG-haESCs) can support full-term development of semi-cloned (SC) embryos upon injection into MII oocytes and thus have potential applications in genetic modifications. However, the very low birth rate of SC pups limits practical use of this approach. Here, we show that AG-haESCs carrying deletions in the DMRs(More)
Phospholipase C (PLC) is an enzyme that plays crucial roles in various signal transduction pathways in mammalian cells. However, the role of PLC in plant development is poorly understood. Here we report involvement of PLC2 in auxin-mediated reproductive development in Arabidopsis. Disruption of PLC2 led to sterility, indicating a significant role for PLC2(More)
The regulation of Rho of plants (ROP) in morphogenesis of leaf epidermal cells has been well studied, but the roles concerning regulators of ROPs such as RhoGDIs are poorly understood. This study reports that AtRhoGDI1 (GDI1) acts as a versatile regulator to modulate development of seedlings and leaf pavement cells. In mutant gdi1, leaf pavement cells(More)
Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing(More)
A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene(More)
Cell fate determination requires the cooperation between extrinsic signals and intrinsic molecules including transcription factors as well as epigenetic regulators. Nevertheless, how neural fate commitment is regulated by epigenetic modifications remains largely unclear. Here we show that transient histone deacetylation at epiblast stage promotes neural(More)
The involvement of Rho of Plants (ROP) GTPases in abscisic acid (ABA) signalling in Arabidopsis has been demonstrated in many studies. However, the roles of RopGEFs (Rop guanine nucleotide exchange factors), which modulate ROP activities in ABA signalling, are poorly understood. Here, we demonstrate that RopGEF2 may play a negative role in ABA-suppressed(More)
  • 1