Learn More
Cardiovascular disease (CVD) is the single leading cause of global mortality and is projected to remain so. Cardiac arrhythmia is a very common type of CVD and may indicate an increased risk of stroke or sudden cardiac death. The ECG is the most widely adopted clinical tool to diagnose and assess the risk of arrhythmia. ECGs measure and display the(More)
Artificial neural networks (ANNs) are a promising machine learning technique in classifying non-linear electrocardiogram (ECG) signals and recognizing abnormal patterns suggesting risks of cardiovascular diseases (CVDs). In this paper, we propose a new reusable neuron architecture (RNA) enabling a performance-efficient and cost-effective silicon(More)
Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing(More)
Continued rapid progress in the development of embedded motion sensing enables wearable devices that provide fundamental advances in the capability to monitor and classify human motion, detect movement disorders, and estimate energy expenditure. With this progress, it is becoming possible to provide, for the first time, evaluation of outcomes of(More)
The aim of this study was to identify an effective flavonoid that could improve the intracellular accumulation of ritonavir in human brain-microvascular endothelial cells (HBMECs). An in vivo experiment on Sprague-Dawley rats was then designed to further determine the flavonoid's impact on the pharmacokinetics and tissue distribution of ritonavir. In the(More)