Learn More
BACKGROUND Retinoic acid receptor (RAR) activation induces cell differentiation and may antagonize cancer progression. Cellular retinol-binding protein I (CRBP-I) functions in retinol storage and its expression is lower in human cancers than in normal cells. We hypothesized that retinol storage might be linked to RAR activation and thus that lowered CRBP-I(More)
The bioactivity of retinol (vitamin A) is in part dependent on its metabolism to retinoic acid (RA). We investigated the ability of breast epithelial cells to synthesize RA when challenged with a physiological retinol dose (2 microM). Normal human mammary epithelial cells (HMEC) cultured from reduction mammoplasties were competent in RA synthesis and the(More)
The presence of cell surface Ca2+ permeable alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels on subsets of central neurons influences both normal physiological function and vulnerability to excitotoxicity. Factors that regulate the formation and membrane insertion of Ca-A/K channels, however, are poorly understood.(More)
BACKGROUND The biologic activity of vitamin A depends, in part, on its metabolism to active nuclear receptor ligands, chiefly retinoic acid. The cellular retinol-binding protein (CRBP) binds vitamin A with high affinity and is postulated to regulate its uptake and metabolism. In this report, we analyze the expression of CRBP in normal and malignant breast(More)
We showed earlier that cellular retinol-binding protein (CRBP) expression is downregulated in a subset of human breast cancers. We have now investigated the outcome of ectopic CRBP expression in MTSV1-7 cells, a SV40 T antigen-transformed human breast epithelial cell line devoid of endogenous CRBP expression. We found that: (i) CRBP did not inhibit adherent(More)
BACKGROUND The cellular retinol binding protein I gene (CRBP) is downregulated in a subset of human breast cancers and in MMTV-Myc induced mouse mammary tumors. Functional studies suggest that CRBP downregulation contributes to breast tumor progression. What is the mechanism underlying CRBP downregulation in cancer? Here we investigated the hypothesis that(More)
We investigated the mechanism of retinoic acid receptor (RAR) beta2 gene silencing in breast cancer cells. Transfection experiments indicated that MCF-7 cells transactivate an exogenous beta2 promoter (-1470/+156) to the same extent as MTSV1.7 breast epithelial cells, which express endogenous RARbeta2. This was true even in the context of replicated(More)
  • 1