Yuuki Shimozu

Learn More
4-Oxo-2(E)-nonenal (ONE), a peroxidation product of ω-6 polyunsaturated fatty acids, covalently reacts with lysine residues to generate a 4-ketoamide-type ONE-lysine adduct, N(ε)-(4-oxononanoyl)lysine (ONL). Using an ONL-coupled protein as the immunogen, we raised the monoclonal antibody (mAb) 9K3 directed to the ONL and conclusively demonstrated that the(More)
α,β-Unsaturated aldehydes generated during lipid peroxidation, such as 4-oxoalkenals and 4-hydroxyalkenals, can give rise to protein degeneration in a variety of pathological states. Although the covalent modification of proteins by these end products has been well studied, the reactivity of unstable intermediates possessing a hydroperoxy group, such as(More)
4-Oxo-2-nonenal (ONE), an aldehyde originating from the peroxidation of omega6 polyunsaturated fatty acids, preferentially reacts with the cysteine residues of protein. Despite the fact that there has been significant recent interest in the protein reactivity and biological activity of ONE, the structural basis of the ONE-cysteine adducts remain to be(More)
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is an endothelial scavenger receptor that is important for the uptake of OxLDL (oxidized low-density lipoprotein) and contributes to the pathogenesis of atherosclerosis. However, the precise structural motifs of OxLDL that are recognized by LOX-1 are unknown. In the present study, we have(More)
Three new ellagitannin oligomers, isorugosins H (1), I (2), and J (3), together with 11 known hydrolyzable tannins were isolated from an aqueous acetone extract of the fresh leaves of Liquidambar formosana. Their chemical structures were elucidated based on spectroscopic data and chemical conversion into known hydrolyzable tannins. The bridging mode of the(More)
We isolated a new ellagitannin, davicratinic acid A (5), together with four known ellagitannins, davidiin (1), granatin A (2), pedunculagin (3), and 3-O-galloylgranatin A (4), from an aqueous acetone extract of dried Davidia involucrata leaves. The known ellagitannins were identified based on spectroscopic data. The structure of davicratinic acid A (5), a(More)
  • 1