Yuuichi Kuroki

Learn More
INTRODUCTION Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by features other than increased pulmonary vascular permeability. Pulmonary vascular permeability combined with increased extravascular lung water content has been considered a quantitative diagnostic criterion of ALI/ARDS. This prospective, multi-institutional,(More)
INTRODUCTION The Berlin definition divides acute respiratory distress syndrome (ARDS) into three severity categories. The relationship between these categories and pulmonary microvascular permeability as well as extravascular lung water content, which is the hallmark of lung pathophysiology, remains to be elucidated. The aim of this study was to evaluate(More)
BACKGROUND The features of early-phase acute respiratory distress syndrome (ARDS) are leakage of fluid into the extravascular space and impairment of its reabsorption, resulting in extravascular lung water (EVLW) accumulation. The current study aimed to identify how the initial EVLW values and their change were associated with mortality. METHODS This was(More)
BACKGROUND Extravascular lung water (EVLW), as measured by the thermodilution method, reflects the extent of pulmonary edema. Currently, there are no clinically effective treatments for preventing increases in pulmonary vascular permeability, a hallmark of lung pathophysiology, in patients with acute lung injury/acute respiratory distress syndrome(More)
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by the increased pulmonary permeability secondary to diffuse alveolar inflammation and injuries of several origins. Especially, the distinction between a direct (pulmonary injury) and an indirect (extrapulmonary injury) lung injury etiology is gaining more attention as a means of better(More)
BACKGROUND In patients with severe sepsis, depression of cardiac performance is common and is often associated with left ventricular (LV) dilatation to maintain stroke volume. Although it is essential to optimize cardiac preload to maintain tissue perfusion in patients with severe sepsis, the optimal preload remains unknown. This study aimed to evaluate the(More)
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is(More)
  • 1