Learn More
In vitro, attachment to the overlying membrane was found to affect the resting position of the hair cell bundles of the bullfrog sacculus. To assess the effects of such a deflection on mechanically decoupled hair bundles, comparable offsets were imposed on decoupled spontaneously oscillating bundles. Strong modulation was observed in their dynamic state(More)
Spontaneous oscillations displayed by hair bundles of the bullfrog sacculus have complex temporal profiles, not fully captured by single limit-cycle descriptions. Quiescent intervals are typically interspersed with oscillations, leading to a bursting-type behavior. Temporal characteristics of the oscillation are strongly affected by imposing a mechanical(More)
The inner ear constitutes a remarkably sensitive mechanical detector. This detection occurs in a noisy and highly viscous environment, as the sensory cells-the hair cells-are immersed in a fluid-filled compartment and operate at room or higher temperatures. We model the active motility of hair cell bundles of the vestibular system with the Adler equation,(More)
Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed(More)
Spontaneous oscillations exhibited by free-standing hair bundles from the Bullfrog sacculus suggest the existence of an active process that might underlie the exquisite sensitivity of the sacculus to mechanical stimulation. However, this spontaneous activity is suppressed by coupling to an overlying membrane, which applies a large mechanical load on the(More)
The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point,(More)
  • 1