Learn More
Lymphocyte activation is accompanied by visible changes in chromatin structure. We find that antigen receptor signaling induces the rapid association of the BAF complex with chromatin. PIP2, which is regulated by activation stimuli, is sufficient in vitro to target the BAF complex to chromatin, but it has no effect on related chromatin remodeling complexes(More)
Germline mutations in the tumor suppressor gene, BRCA1, predispose individuals to breast and ovarian cancers. Using a combination of affinity- and conventional chromatographic techniques, we have isolated a predominant form of a multiprotein BRCA1-containing complex from human cells displaying chromatin-remodeling activity. Mass spectrometric sequencing of(More)
Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are(More)
hSSB1 (human single strand DNA-binding protein 1) has been shown to participate in homologous recombination (HR)-dependent repair of DNA double strand breaks (DSBs) and ataxia telangiectasia-mutated (ATM)-mediated checkpoint pathways. Here we present evidence that hSSB2, a homolog of hSSB1, plays a role similar to hSSB1 in DNA damage-response pathways. This(More)
FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma(More)
DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved(More)
  • Muzammil Ahmad, Weiping Shen, +4 authors Weidong Wang
  • 2017
Human cells contain five topoisomerases in the nucleus and cytoplasm, but which one is the major topoisomerase for mRNAs is unclear. To date, Top3β is the only known topoisomerase that possesses RNA topoisomerase activity, binds mRNA translation machinery and interacts with an RNA-binding protein, FMRP, to promote synapse formation; and Top3β gene deletion(More)
  • 1