Yutaka Miyazawa

Learn More
Circumnutation and winding in plants are universal growth movements that allow plants to survive despite their sessile nature. However, the detailed molecular mechanisms controlling these phenomena remain unclear. We previously found that a gravitropic mutant of Japanese morning glory (Pharbitis nil or Ipomoea nil), Shidare-asagao (weeping), is defective(More)
When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two(More)
Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the(More)
Because of their sessile nature, plants evolved several mechanisms to tolerate or avoid conditions where water is scarce. The molecular mechanisms contributing to drought tolerance have been studied extensively, whereas the molecular mechanism underlying drought avoidance is less understood despite its importance. Several lines of evidence showed that the(More)
  • 1