Yutaka Asada

Learn More
Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the(More)
The Arabidopsis mutant cad1 (constitutively activated cell death 1) shows a phenotype that mimics hypersensitive response (HR)-like cell death. The CAD1 gene, which encodes a protein containing a domain with significant homology to the MACPF (membrane attach complex and perforin) domain of complement components and perforin, is likely to control plant(More)
In higher plants, the metabolism of carbon (C) and nitrogen nutrients (N) is mutually regulated and referred to as the C and N balance (C/N). Plants are thus able to optimize their growth depending on their cellular C/N status. Arabidopsis ATL31 and ATL6 encode a RING-type ubiquitin ligases which play a critical role in the C/N status response (Sato et al.(More)
Mammalian dimeric dihydrodiol dehydrogenase is identical with d-xylose dehydrogenase and belongs to a protein family with prokaryotic proteins including glucose-fructose oxidoreductase. Of the conserved residues in this family, either His-79 or Tyr-180 of d-xylose/dihydrodiol dehydrogenase has been proposed to be involved in the catalytic function.(More)
Dimeric dihydrodiol dehydrogenases (DDs, EC 1.3.1.20), which oxidize trans-dihydrodiols of aromatic hydrocarbons to the corresponding catechols, have been molecularly cloned from human intestine, monkey kidney, pig liver, dog liver, and rabbit lens. A comparison of the sequences with the DNA sequences in databases suggested that dimeric DDs constitute a(More)
  • 1