Yusuke Sugahara

Learn More
Many researchers have been studied on acceleration control algorithms for biped robots to deal with uneven terrain. However, the control algorithms are difficult to be used for human-carrying biped walking robots because of modeling errors. In this paper, a landing pattern modification method is proposed which based on nonlinear compliance control.(More)
The unique “Tokku” Special Zone for Robotics Empirical Testing and Development (RT special zone) originated in Japan. Since 2003, the world’s first RT special zone had already established inFukuokaPrefecture, Fukuoka City and Kitakyushu City. At that time, Takanishi Laboratory, Humanoid Robotics Institute of Waseda University had conducted many empirical(More)
Biped walking is easily adaptable to rough terrain such as stairs and stony paths, but the walk speed and energy efficiency on the flat ground is not so effective compared with wheeled locomotion. In this paper, we propose a biped robot to be able to walk or wheel according to the ground conditions. For wheeled locomotion, WS-2 (Waseda Shoes -No. 2) is(More)
This puper describes the design of a battery driven bipedal robot, which uses 6-DOF parallel mechanisms for its each leg. We have designed this considering a bipedal robot as the leg module that is suficient for practical use as a multi-purpose locomotor of the robot system. This robot is applicable to various fields, such as medical, werfare and(More)
This paper describes a walking control method on inclined planes for a biped locomotor. The walking control consists of a position control, virtual compliance control and posture control. Parameters of the compliance control are changed continuously in support and swing phases. The orientation of robot’s waist is kept level by posture control. Several(More)
Many control methods have been studied on the assumption that the feet of biped robots contact the ground with four points. However, it is difficult for almost all of such biped robots to maintain four-point contact on uneven terrains because they have rigid and flat soles. In order to solve the problem, foot mechanisms should be studied. In 2003, we(More)
This paper proposes a new car transportation system, iCART II (intelligent Cooperative Autonomous Robot Transporters - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than the half of the conventional robot used in iCART (intelligent Cooperative(More)
To date, many control methods have been researched on the assumption that the soles of a biped walking robot contact the ground as four points. It is difficult for almost all biped robots to maintain four-point-contact on uneven terrain because they have rigid and flat soles. It means that the biped robots can lose their balance. To solve this kind of(More)
This paper describes how to compensate unknown external forces caused by a rider's motion of a biped walking vehicle. When external forces act on a robot's waist, the waist is accelerated so that a measured ZMP may be equal to a reference ZMP. To inhibit the divergence of the waist motion, the reference ZMP is varied inside a support polygon. However, if a(More)